Электромагнитное загрязнение. Электромагнитные поля и излучения

Электромагнитное загрязнение. Электромагнитные поля и излучения


Электричество вокруг нас

Электромагнитное поле (определение из БСЭ) — это особая форма материи, посредством которой осуществляется взаимодействие между электрически заряженными частицами. Исходя из этого определения не понятно, что является первичным - существование заряженных частиц или же наличие поля. Быть может только благодаря наличию электромагнитного поля частицы могут получать заряд. Также как и в истории с курицей и яйцом. Суть в том, что заряженные частицы и электромагнитное поле неотделимы друг от друга и друг без друга существовать не могут. Поэтому определение не даёт нам с вами возможности понять суть явления электромагнитного поля и единственное, что следует запомнить, что это особая форма материи ! Теория электромагнитного поля была разработана Джеймсом Максвеллом в 1865 г.

Что такое электромагнитное поле? Можно представить себе, что мы живём в электромагнитной Вселенной, которая вся целиком и полностью пронизана электромагнитным полем, а различные частицы и вещества в зависимости от своего строения и свойств под воздействием электромагнитного поля приобретают положительный или отрицательный заряд, накапливают его, или же остаются электронейтральными. Соответственно электромагнитные поля можно разделить на два вида: статическое , то есть излучаемое заряженными телами (частицами) и неотъемлемое от них, и динамическое , распространяющееся в пространстве, будучи оторванным от источника, излучившего его. Динамическое электромагнитное поле в физике представляется в виде двух взаимноперпендикулярных волн: электрической (Е) и магнитной (Н).

Тот факт, что электрическое поле порождается переменным магнитным полем,а магнитное поле - переменным электрическим, приводит к тому, что электрические и магнитные переменные поля не существуют по-отдельности друг от друга. Электромагнитное поле неподвижных или равномерно движущихся заряженных частиц напрямую связано с самими частицами. При ускоренном движении этих заряженных частиц электромагнитное поле "отрывается" от них и существует независимо в форме электромагнитных волн, не исчезая с устранением источника.

Источники электромагнитных полей

Природные (естественные) источники электромагнитных полей

Природные (естественные) источники ЭМП делят на следующие группы:

  • электрическое и магнитное поле Земли;
  • радио излучение Солнца и галактик (реликтовое излучение, равномерно распространенное во Вселенной);
  • атмосферное электричество;
  • биологический электромагнитный фон.
  • Магнитное поле Земли. Величина геомагнитного поля Земли меняется по земной поверхности от 35 мкТл на экваторе до 65 мкТл вблизи полюсов.

    Электрическое поле Земли направлено нормально к земной поверхности, заряженной отрицательно относительно верхних слоев атмосферы. Напряжённость электрического поля у поверхности Земли составляет 120…130 В/м и убывает с высотой примерно экспоненциально. Годовые изменения ЭП сходны по характеру на всей Земле: максимальная напряжённость 150…250 В/м в январе-феврале и минимальная 100…120 В/м в июне-июле.

    Атмосферное электричество – это электрические явления в земной атмосфере. В воздухе (ссылка) всегда имеются положительные и отрицательные электрические заряды – ионы, возникающие под действием радиоактивных веществ, космических лучей и ультрафиолетового излучения Солнца. Земной шар заряжен отрицательно; между ним и атмосферой имеется большая разность потенциалов. Напряжённость электрастатического поля резко возрастает во время гроз. Частотный диапазон атмосферных разрядов лежит между 100 Гц и 30 МГц.

    Внеземные источники включают излучения за пределами атмосферы Земли.

    Биологический электромагнитный фон. Биологические объекты, как и другие физические тела, при температуре выше абсолютного нуля излучают ЭМП в диапазоне 10 кГц – 100 ГГц. Это объясняется хаотическим движением зарядов – ионов, в теле человека. Плотность мощности такого излучения у человека составляет 10 мВт/см2, что для взрослого даёт суммарную мощность в 100 Вт. Человеческое тело также излучает ЭМП с частотой 300 ГГц с плотностью мощности около 0,003 Вт/м2.

    Антропогенные источники электромагнитных полей

    Антропогенные источники делятся на 2 группы:

    Источники низкочастотных излучений (0 - 3 кГц)

    Эта группа включает в себя все системы производства, передачи и распределения электроэнергии (линии электропередачи, трансформаторные подстанции, электростанции, различные кабельные системы), домашнюю и офисную электро- и электронную технику, в том числе и мониторы ПК, транспорт на электроприводе, ж/д транспорт и его инфраструктуру, а также метро, троллейбусный и трамвайный транспорт.

    Уже сегодня электромагнитное поле на 18-32% территории городов формируется в результате автомобильного движения. Электромагнитные волны, возникающие при движении транспорта, создают помехи теле- и радиоприему, а также могут оказывать вредное воздействие на организм человека.

    Источники высокочастотных излучений (от 3 кГц до 300 ГГц)

    К этой группе относятся функциональные передатчики - источники электромагнитного поля в целях передачи или получения информации. Это коммерческие передатчики (радио, телевидение), радиотелефоны (авто-, радиотелефоны, радио СВ, любительские радиопередатчики, производственные радиотелефоны), направленная радиосвязь (спутниковая радиосвязь, наземные релейные станции), навигация (воздушное сообщение, судоходство, радиоточка), локаторы (воздушное сообщение, судоходство, транспортные локаторы, контроль за воздушным транспортом). Сюда же относится различное технологическое оборудование, использующее СВЧ-излучение, переменные (50 Гц - 1 МГц) и импульсные поля, бытовое оборудование (СВЧ-печи), средства визуального отображения информации на электронно-лучевых трубках (мониторы ПК, телевизоры и пр.). Для научных исследований в медицине применяют токи ультравысокой частоты. Возникающие при использовании таких токов электромагнитные поля представляют определенную профессиональную вредность, поэтому необходимо принимать меры защиты от их воздействия на организм.

    Основными техногенными источниками являются:

  • бытовые телеприёмники, СВЧ-печи, радиотелефоны и т.п. устройства;
  • электростанции, энергосиловые установки и трансформаторные подстанции;
  • широкоразветвлённые электрические и кабельные сети;
  • радиолокационные, радио- и телепередающие станции, ретрансляторы;
  • компьютеры и видеомониторы;
  • воздушные линии электропередач (ЛЭП).
  • Особенностью облучения в городских условиях является воздействие на население как суммарного электромагнитного фона (интегральный параметр), так и сильных ЭМП от отдельных источников (дифференциальный параметр).

    Среди основных источников ЭМИ можно перечислить:

    Электротранспорт (трамваи, троллейбусы, поезда,…)

    Линии электропередач (городского освещения, высоковольтные,…)

    Электропроводка (внутри зданий, телекоммуникации,…)

    Бытовые электроприборы

    Теле- и радиостанции (транслирующие антенны)

    Спутниковая и сотовая связь (транслирующие антенны)

    Персональные компьютеры

    Воздействие электромагнитного поля на человека

    Сегодня электромагнитное облучение в 100 миллионов раз превышает то, что испытывали наши деды. Длительное воздействие искусственных электромагнитных излучений серьезно ухудшают здоровье. Эпидемиологи установили, что раковые заболевания чаще встречаются среди людей, проживающих в непосредственной близости от источников сильных электромагнитных полей, таких, например, как высоковольтные линии электропередачи. Было доказано также влияние электромагнитных полей на выработку шишковидной железой мелатонина, - гормона, играющего не последнюю роль в иммунной системе (его также называют "гормон молодости").

    Хаотичная энергия субчастиц искусственных электромагнитных полей, эта своего рода электромагнитная грязь, действует с огромной разрушительной силой на биоэлектромагнитное поле нашего тела, в пределах которого миллионы неуловимых электрических импульсов должны балансировать и регулировать деятельность каждой живой клетки.

    Рабочая группа ВООЗ по гигиеническим аспектам использования видео- и радиотерминалов выявила нарушения состояния здоровья при использовании устройств, создающих электромагнитное излучение и его торсионную составляющую, наиболее серьезными из которых являются:

    • · онкологические заболевания (вероятность заболевания возрастает пропорционально длительности вляния ЭМИ и его торсионной компоненты на организм человека);
    • · угнетение репродуктивной системы (импотенция, уменьшение либидо, нарушение менструального цикла, замедление полового созревания, уменьшение способности оплодотворения и так далее);
    • · неблагоприятное течение беременности (при работе с персональным компьютером больше 20 часов (!) в неделю у женщин вероятность выкидыша возрастает в 2,7 раза, а рождение детей с врожденными дефектами в 2,3 раза больше, чем в контрольных группах, а вероятность патологического течения беременности увеличивается в 1,3 раза при длительности работы с электромагнитными или торсионными излучателями более 4 часов (!) в неделю);
    • · нарушение психоэмоциональной сферы (UF-синдром, стрессовый синдром, агрессивность, раздражительность и так далее);
    • · нарушения в высшей нервно-рефлекторной деятельности (нахождение ребенка более 50 (!) минут в день у экрана телевизора или компьютера уменьшает в 1,4 раза способность к запоминанию новой информации, что связано с влиянием ЭМИ и его торсионной компоненты на corpus callosum и другие нейроструктуры головного мозга);
    • · ухудшение зрения;
    • · нарушение имунной системы (иммуннодепресивное состояние).
    • · Лейкемия (рак крови) у людей, в силу своей профессии постоянно контактирующих с электромагнитными излучателями, которые также генерируют торсионные поля, в 4,3 раза превышает контрольные величины среди работников других специальностей, не связанных с ЭМИ (Университет Дж. Гопкинса, Балтимор, США). Дети, работающие за компьютером, или проводящие свое свободное время возле экрана телевизора больше 2 часов в день, имеют вероятность получить заболевание рака головного мозга в 8,2 раза больше, чем в контрольной группе. Поглощение ЭМИ мозгом происходит неравномерно и приводит к различным структурным изменениям в клетках, а под воздействием торсионной составляющей создает разнообразные виды клинической картины заболевания (болезнь Паркинсона, Альцгеймера и т. д.).

    Все средства и методы защиты от ЭМП могут быть разделены на 3 группы: организационные, инженерно-технические и лечебно-профилактические. Организационные мероприятия как при проектировании, так и на действующих объектах предусматривают предотвращение попадания людей в зоны с высокой напряженностью ЭМП, создание санитарно-защитных зон вокруг антенных сооружений различного назначения. Для прогнозирования уровней электромагнитных излучений на стадии проектирования используются расчетные методы определения ППЭ и напряженности ЭМП.

    Общие принципы, положенные в основу инженерно-технической защиты, сводятся к следующему: электрогерметизация элементов схем, блоков, узлов установки в целом с целью снижения или устранения электромагнитного излучения; защита рабочего места от облучения или удаление его на безопасное расстояние от источника излучения. Для экранирования рабочего места рекомендуется использовать различные типы экранов: отражающие (сплошные металлические из металлической сетки, металлизированной ткани) и поглощающие (из радиопоглощающих материалов).

    В качестве средств индивидуальной защиты рекомендуется специальная одежда, выполненная из металлизированной ткани, и защитные очки.

    В том случае, когда облучению подвергаются только отдельные части тела или лицо, возможно использование защитного халата, фартука, накидки с капюшоном, перчаток, очков, щитков.

    Лечебно-профилактические мероприятия должны быть направлены прежде всего на раннее выявление нарушений в состоянии здоровья работающих. Предусмотрены предварительные и периодические медосмотры для лиц, работающих в условиях воздействия СВЧ (миллиметровых, сантиметровых, дециметровых диапазонов), 1 раз в 12 мес. Для лиц, работающих в условиях воздействия ЭМП УВЧ и ВЧ-диапазона (средние, длинные и короткие волны), периодические медосмотры работающих осуществляются 1 раз в 24 мес. В медицинском осмотре принимают участие терапевт, невропатолог, офтальмолог.

    Также организационным мероприятиям по защите от действия электромагнитных полей относятся:

    • 1. Выбор режимов работы излучающего оборудования, обеспечивающих уровень излучения, не превышающий предельно допустимый.
    • 2. Ограничение места и времени нахождения людей в зоне действия поля.
    • 3. Обозначение и ограждение зон с повышенным уровнем излучения.
    • 4. Защита временем.

    Применяется, когда нет возможности снизить интенсивность излучения в данной точке до предельно допустимого уровня. Путем обозначения, оповещения и т.п. ограничивается время нахождения людей в зоне выраженного воздействия электромагнитного поля. В действующих нормативных документах предусмотрена зависимость между интенсивностью плотности потока энергии и временем облучения.

    5. Защита расстоянием.

    Применяется, если невозможно ослабить воздействие другими мерами, в том числе и защитой временем. Метод основан на падении интенсивности излучения, пропорциональном квадрату расстояния до источника. Защита расстоянием положена в основу нормирования санитарно-защитных зон - необходимого разрыва между источниками поля и жилыми домами, служебными помещениями и т.п. Границы зон определяются расчетами для каждого конкретного случая размещения излучающей установки при работе её на максимальную мощность излучения. В соответствии с ГОСТ 12.1.026-80 зоны с опасными уровнями излучения ограждаются, на ограждениях устанавливаются предупреждающие знаки с надписями: «Не входить, опасно!».

    Технический прогресс имеет и обратную сторону. Глобальное использование различной техники, работающей от электричества, стало причиной загрязнения, которому дали название – электромагнитный шум. В этой статье мы рассмотрим природу этого явления, степень его воздействия на организм человека и меры защиты.

    Что это такое и источники излучения

    Электромагнитное излучение – это электромагнитные волны, которые возникают при возмущении магнитного или электрического поля. Современная физика трактует этот процесс в рамках теории корпускулярно-волнового дуализма. То есть, минимальной порцией электромагнитного излучения является квант, но в тоже время оно имеет частотно-волновые свойства, определяющие его основные характеристики.

    Спектр частот излучения электромагнитного поля, позволяет классифицировать его на следующие виды:

    • радиочастотное (к ним относятся радиоволны);
    • тепловое (инфракрасное);
    • оптическое (то есть, видимое глазом);
    • излучение в ультрафиолетовом спектре и жесткое (ионизированное).

    Детальную иллюстрацию спектрального диапазона (шкала электромагнитных излучений), можно увидеть на представленном ниже рисунке.

    Природа источников излучения

    В зависимости от происхождения, источники излучения электромагнитных волн в мировой практике принято классифицировать на два вида, а именно:

    • возмущения электромагнитного поля искусственного происхождения;
    • излучение, исходящее от естественных источников.

    Излучения, исходящие от магнитного поля поле вокруг Земли, электрических процессов в атмосфере нашей планеты, ядерного синтеза в недрах солнца – все они естественного происхождения.

    Что касается искусственных источников, то они побочное явление, вызванное работой различных электрических механизмов и приборов.

    Исходящее от них излучение, может быть низкоуровневым и высокоуровневым. От уровней мощности источников полностью зависит степень напряженности излучения электромагнитного поля.

    В качестве примера источников с высоким уровнем ЭМИ можно привести:

    • ЛЭП, как правило, высоковольтные;
    • все виды электротранспорта, а также сопутствующая ему инфраструктура;
    • теле- и радиовышки, а также станции передвижной и мобильной связи;
    • установки для преобразования напряжения электрической сети (в частности, волны исходящие от трансформатора или распределяющей подстанции);
    • лифты и другие виды подъемного оборудования, где используется электромеханическая силовая установка.

    К типичным источникам, излучающим низкоуровневые излучения можно отнести следующее электрооборудование:

    • практически все устройства с ЭЛТ дисплеем (например: платежный терминал или компьютер);
    • различные типы бытовой техники, начиная от утюгов и заканчивая климатическими системами;
    • инженерные системы, обеспечивающие подачу электричества к различным объектам (подразумеваются не только кабель электропередач, а сопутствующее оборудование, например розетки и электросчетчики).

    Отдельно стоит выделить специальное оборудование, используемое в медицине, которое испускает жесткое излучение (рентгеновские аппараты, МРТ и т.д.).

    Влияние на человека

    В ходе многочисленных исследований радиобиологи пришли к неутешительному выводу – длительное излучение электромагнитных волн может стать причиной «взрыва» болезней, то есть оно вызывает бурное развитие паталогических процессов в организме человека. Причем многие из них вносят нарушения на генетическом уровне.

    Видео: Как влияет электромагнитное излучение на людей.
    https://www.youtube.com/watch?v=FYWgXyHW93Q

    Это происходит из-за того, что у электромагнитного поля высокий уровень биологической активности, что негативно отражается живых организмах. Фактор влияния зависит от следующих составляющих:

    • характер производимого излучения;
    • как долго и с какой интенсивностью оно продолжается.

    Влияние на здоровье человека излучения, у которого электромагнитная природа, напрямую зависит от локализации. Она может быть как местного, так и общего характера. В последнем случае происходит масштабное облучение, например излучение, производимое ЛЭП.

    Соответственно, под местным облучением подразумевается воздействие на определенные участки тела. Исходящие от электронных часов или мобильного телефона электромагнитные волны, яркий пример локального воздействия.

    Отдельно необходимо отметить термальное воздействие высокочастотного электромагнитного излучения на живую материю. Энергия поля преобразуется в тепловую энергию (за счет вибрации молекул), на этом эффекте основа работа промышленных СВЧ излучателей, используемых для нагрева различных веществ. В отличие от пользы в производственных процессах, термальное воздействие на организм человека может оказаться пагубным. С точки зрения радиобиологии находиться возле «теплого» электрооборудования не рекомендуется.

    Необходимо принять во внимание, что в быту мы регулярно подвергаемся облучению, причем это происходит не только на производстве, а и дома или при перемещении по городу. Со временем биологический эффект накапливается и усиливается. С ростом электромагнитного зашумления возрастает количество характерных заболеваний мозга или нервной системы. Заметим, что радиобиология довольно молодая наука, поэтому вред наносимый живым организмам от электромагнитного излучения досконально не изучен.

    На рисунке виден, уровень электромагнитных волн, производимых обычными, используемыми в быту приборами.


    Обратите внимание, что уровень напряженности поля существенно снижается на расстоянии. То есть, чтобы уменьшит его действие, достаточно отдалиться от источника на определенное расстояние.

    Формула для расчета нормы (нормирование) излучения электромагнитного поля указана в соответствующих ГОСТах и СанПиНах.

    Защита от излучения

    На производстве в качестве средств, защищающих от облучения, активно применяются поглощающие (защитные) экраны. К сожалению, защититься от излучения электромагнитного поля при помощи такого оборудования в домашних условиях не представляется возможным, поскольку оно на это не рассчитано.

    • чтобы свести воздействие излучения электромагнитного поля практически к нулю, следует отойти от ЛЭП, радио- и телевышек на расстояние не менее 25 метров (необходимо учитывать мощность источника);
    • для ЭЛТ монитора и телевизора это расстояние значительно меньше – около 30 см;
    • электронные часы не следует ставить близко подушке, оптимальное расстояние для них более 5 см;
    • что касается для радио и сотовых телефонов, подносить их ближе, чем на 2,5 сантиметра не рекомендуется.

    Заметим, что многие знают, как опасно стоять рядом с высоковольтными линиями электропередач, но при этом большинство людей не придают значения, обычным бытовым электроприборам. Хотя достаточно поставить системный блок на пол или переместить подальше, и вы обезопасите себя и своих близких. Советуем проделать это, после чего замерять фон от компьютера используя детектор излучения электромагнитного поля, чтобы наглядно убедиться в его снижении.

    Этот совет также касается и размещения холодильника, многие ставят его неподалеку от кухонного стола, практично, но небезопасно.

    Никакая таблица не сможет указать точное безопасное расстояние от конкретного электрооборудования, поскольку излучения может варьироваться, как в зависимости от модели устройства, так и страны производителя. В настоящий момент нет единого международного стандарта, поэтому в разных странах нормы могут иметь существенные расхождения.

    Точно определить интенсивность излучения можно при помощи специального прибора – флюксметра. Согласно принятым в России нормам, максимально допустимая доза не должна превышать 0,2мкТл. Рекомендуем произвести замер в квартире, используя указанный выше прибор для измерения степени излучения электромагнитного поля.

    Флюксметр – прибор для измерения степени излучения электромагнитного поля

    Старайтесь сократить время, когда вы подвергаетесь облучению, то есть, не находитесь долго рядом с работающими электротехническими приборами. Например, совсем не обязательно постоянно стоять у электроплиты или СВЧ-печки во время приготовления пищи. Касательно электрооборудования можно заметить, что теплое, не всегда означает безопасное.

    Всегда выключайте неиспользуемые электроприборы. Люди зачастую оставляют включенными различные устройства, не учитывая, что в это время от электротехники исходит электромагнитное излучение. Выключите ноутбук, принтер или другое оборудование, ненужно лишний раз подвергаться облучению, помните про свою безопасность.

    К источникам ЭМП на произ­водстве относятся две большие группы:

    * изделия, которые специально созданы для излучения электромагнитной энергии: радио- и телевизионные вещательные станции, радиолокационные установки, физиотерапевтические ап­параты, различные системы радиосвязи, технологические установки в промышленности. ЭМП широко используются в промышленности, например, в таких технологических процес­сах, как закалка и отпуск стали, накатка твердых сплавов на ре­жущий инструмент, плавка металлов и полупроводников и т. д.;

    Электростатические поля (ЭСП) создаются в энергетических установках и при электротехнических процессах. В зависимости от источников образования они могут существовать в виде собственно электростатического поля (поля неподвижных зарядов) или стацио­нарного электрического поля (электрическое поле постоянного тока). В промышленности ЭСП широко используются для электро­газоочистки, электростатической сепарации руд и материалов, элек­тростатического нанесения лакокрасочных и полимерных материа­лов. Статическое электричество образуется при изготовлении, испытаниях, транспортировке и хранении полупроводниковых приборов и интегральных схем, шлифовке и полировке футляров радиотелевизионных приемников, в помещениях вычислительных центров, на участках множительной техники, а также в ряде других процессов, где используются диэлектрические материалы. Электро­статические заряды и создаваемые ими электростатические поля могут возникать при движении диэлектрических жидкостей и неко­торых сыпучих материалов по трубопроводам, переливании жидко­стей-диэлектриков, скатывании пленки или бумаги в рулон.

    Магнитные поля создаются электромагнитами, соленоидами, установками конденсаторного типа, литыми и металлокерамическими магнитами и др. устройствами.

    В ЭМП различаются три зоны, которые формируются на раз­личных расстояниях от источника ЭМИ.

    Первая зона – зона индукции (ближняя зона) охватывает проме­жуток от источника излучения до расстояния, равного примерно л/2п«1/6л. В этой зоне электромагнитная волна еще не сформиро­вана и поэтому электрическое и магнитное поля не взаимосвязаны и действуют независимо.

    Вторая зона – зона интерференции (промежуточная зона) располагается на расстояниях примерно от л/2л до 2лл. В этой зоне про­исходит формирование ЭМВ и на человека действует электрическое и магнитное поля, а также оказывается энергетическое воздействие.

    Третья зона – волновая зона (дальняя зона) располагается на расстояниях свыше 2лл. В этой зоне ЭМВ сформирована, электриче­ское и магнитное поля взаимосвязаны. На человека в этой зоне воз­действует энергия волны.

    Воздействие неионизирующих излучений на человека. Электромагнитные поля биологически активны – живые существа реагируют на их действие. Однако у человека нет специального органа чувств для определения ЭМП (за исключением оптического диапазона). Наиболее чувствительны к электромагнитным полям центральная нервная система, сердечно-сосудистая, гормональная и репродук­тивная системы.

    Длительное воздействие на человека электромагнитных полей промышленной частоты (50 Гц) приводит к расстройствам, которые субъективно выражаются жалобами на головную боль в височной и затылочной области, вялость, расстройство сна, снижение памяти, повышенную раздражительность, апатию, боли в сердце, нарушение ритма сердечных сокращений. Могут наблюдаться функциональные нарушения в центральной нервной системе, а также изменения в составе крови.

    Воздействие электростатического поля на человека связано с протеканием через него слабого тока. При этом электротравм никог­да не наблюдается. Однако вследствие рефлекторной реакции на протекающий ток возможна механическая травма от удара о распо­ложенные рядом элементы конструкций, падение с высоты и т.д. К ЭСП наиболее чувствительны центральная нервная система, сердечно-сосудистая система. Люди, работающие в зоне действия ЭСП, жалуются на раздражительность, головную боль, нарушение сна.

    При воздействии магнитных полей могут наблюдаться наруше­ния функций нервной, сердечно-сосудистой и дыхательной систем, пищеварительного тракта, изменения в составе крови. При локаль­ном действии магнитных полей (прежде всего на руки) появляется ощущение зуда, Сходность и синюшность кожных покровов, отеч­ность и уплотнение, а иногда ороговение кожи.

    Воздействие ЭМИ радиочастотного диапазона определяется плотностью потока энергии, частотой излучения, продолжительно­стью воздействия, режимом облучения (непрерывное, прерывистое, импульсное), размером облучаемой поверхности тела, индивидуаль­ными особенностями организма. Воздействие ЭМИ может проявля­ться в различной форме – от незначительных изменений в некото­рых системах организма до серьезных нарушений в организме. По­глощение организмом человека энергии ЭМИ вызывает тепловой эффект. Начиная с определенного предела организм человека не справляется с отводом теплоты от отдельных органов, и их темпера­тура может повышаться. В связи с этим воздействие ЭМИ особенно вредно для тканей и органов со слаборазвитой сосудистой системой и недостаточным кровообращением (глаза, мозг, почки, желудок, желчный и мочевой пузыри). Облучение глаз может привести к ожогам роговицы, а облучение ЭМИ СВЧ-диапазона – к помутне­нию хрусталика – катаракте.

    При длительном воздействии ЭМИ радиочастотного диапазона даже умеренной интенсивности могут произойти расстройства нер­вной системы, обменных процессов, изменения состава крови. Мо­гут также наблюдаться выпадение волос, ломкость ногтей. На ран­ней стадии нарушения носят обратимый характер, но в дальнейшем происходят необратимые изменения в состоянии здоровья, стойкое снижение работоспособности и жизненных сил.

    В процессе эволюции и жизнедеятельности человек испытывает влияние естественного электромагнитного фона, характеристики которого используются как источник информации, обеспечивающий непрерывное взаимодействие с изменяющимися условиями внешней среды.

    Однако вследствие научно-технического прогресса электромагнитный фон Земли в настоящее время не только увеличился, но и претерпел качественные изменения. Появились электромагнитные излучения таких длин волн, которые имеют искусственное происхождение в результате техногенной деятельности (например, миллиметровый диапазон длин волн и др.).

    Спектральная интенсивность некоторых техногенных источников электромагнитного поля (ЭМП) может существенным образом отличаться от эволюционно сложившегося естественного электромагнитного фона, к которому привыкли человек и другие живые организмы биосферы.

    Источники электромагнитных полей

    К основным источникам ЭМП антропогенного происхождения относятся телевизионные и радиолокационные станции, мощные радиотехнические объекты, промышленное технологическое оборудование, высоковольтные линии электропередач промышленной частоты, термические цехи, плазменные, лазерные и рентгеновские установки, атомные и ядерные реакторы и т.п. Следует отметить техногенные источники электромагнитных и других физических полей специального назначения, применяемые в радиоэлектронном противодействии и размещаемые на стационарных и передвижных объектах на земле, воде, под водой, в воздухе.

    Любое техническое устройство, использующее либо вырабатывающее электрическую энергию, является источником ЭМП, излучаемых во внешнее пространство. Особенностью облучения в городских условиях является воздействие на население как суммарного электромагнитного фона (интегральный параметр), так и сильных ЭМП от отдельных источников (дифференциальный параметр).

    Основными источниками электромагнитных полей (ЭМП) радиочастот являются радиотехнические объекты (РТО), телевизионные и радиолокационные станции (РЛС), термические цехи и участки в зонах, примыкающих к предприятиям. Воздействие ЭМП промышленной частоты связано с высоковольтными линиями (ВЛ) электропередач, источниками постоянных магнитных полей, применяемыми на промышленных предприятиях. Зоны с повышенными уровнями ЭМП, источниками которых могут быть РТО и РЛС, имеют размеры до 100...150 м. При этом внутри зданий, расположенных в этих зонах, плотность потока энергии, как правило, превышает допустимые значения.

    Спектр электромагнитных излучений техносферы

    Электромагнитное поле представляет собой особую форму материи, посредством которой осуществляется взаимодействие между электрически заряженными частицами. Электромагнитное поле в вакууме характеризуется векторами напряженности электрического поля Е и индукции магнитного поля В, которые определяют силы, действующие на неподвижные и движущиеся заряды. В системе единиц СИ размерность напряженности электрического поля [Е] = В/м - вольт на метр и размерность индукции магнитного поля [В] = Тл - тесла. Источниками электромагнитных полей являются заряды и токи, т.е. движущиеся заряды. Единица заряда в СИ называется кулон (Кл), а единица тока - ампер (А).

    Силы взаимодействия электрического поля с зарядами и токами определяются следующими формулами:

    F э = qЕ; F м = , (5.9)

    где F э - сила, действующая на заряд со стороны электрического поля, Н; q - величина заряда, Кл; F M - сила, действующая на ток со стороны магнитного поля, Н; j - вектор плотности тока, указывающий направление тока и равный по абсолютной величине А/м 2 .

    Прямые скобки во второй формуле (5.9) обозначают векторное произведение векторов j и В и образуют новый вектор, модуль которого равен произведению модулей векторов j и В, умноженному на синус угла между ними, а направление определяется по правилу правого "буравчика", т.е. при вращении вектора j к вектору В по кратчайшему расстоянию вектор . (5.10)

    Первое слагаемое соответствует силе со стороны электрического поля напряженностью Е, а второе - магнитной силе в поле с индукцией В.

    Электрическая сила действует в направлении напряженности электрического поля, а магнитная сила перпендикулярна как скорости заряда, так и вектору индукции магнитного поля, и ее направление определяется по правилу правого винта.

    ЭМП от отдельных источников могут быть классифицированы по нескольким признакам, наиболее общий из которых - частота. Неионизирующие электромагнитные излучения занимают довольно широкий диапазон частот от ультранизкочастотного (УНЧ) интервала в 0...30 Гц до ультрафиолетовой (УФ) области, т.е. до частот 3 · 1015 Гц.

    Спектр техногенных электромагнитных излучений простирается от сверхдлинных волн (несколько тысяч метров и более) до коротковолнового γ-излучения (с длиной волны менее 10-12 см).

    Известно, что радиоволны, свет, инфракрасное и ультрафиолетовое излучения, рентгеновские лучи и γ-излучение - все это волны одной электромагнитной природы, отличающиеся длиной волны (табл. 5.4).

    Поддиапазоны 1...4 относятся к промышленным частотам, поддиапазоны 5...11 - к радиоволнам. К СВЧ-диапазону отнесены волны с частотами 3...30 ГГц. Однако исторически сложилось так, что под СВЧ-диапазоном понимают колебания волны длиной от 1 м до 1 мм.

    Таблица 5.4. Шкала электромагнитных волн

    Длина вол­ны λ

    Поддиапазоны волн

    Частота коле­баний v

    Диапазон

    № 1...4. Сверхдлинные волны

    № 5. Километровые волны (НЧ - низ­кие частоты)

    № 6. Гектометровые волны (СЧ - сред­ние частоты)

    Радиоволны

    № 8. Метровые волны (ОВЧ - очень высокие частоты)

    № 9. Дециметровые волны (УВЧ - ультравысокие частоты)

    № 10. Сантиметровые волны (СВЧ - сверхвысокие частоты)

    № 11. Миллиметровые волны (милли­метровый диапазон)

    0,1 мм (100 мкм)

    Субмиллиметровые волны

    Инфракрасное излучение (ИК-диапазон)

    4,3 · 10 14 Гц

    Оптический

    диапазон

    Видимый диапазон

    7,5 · 10 14 Гц

    Ультрафиолетовое излучение (УФ-диа- пазон)

    Рентгеновский диапазон

    γ-Излучение

    Космические лучи

    Под оптическим диапазоном в радиофизике, оптике, квантовой электронике понимается диапазон длин волн примерно от субмиллиметрового до дальнего ультрафиолетового излучений. К видимому диапазону относятся колебания волн длинами от 0,76 до 0,38 мкм.

    Видимый диапазон составляет небольшую часть оптического диапазона. Границы переходов УФ-излучения, рентгеновского, γ-излучений точно не фиксированы, но примерно соответствуют указанным в табл. 5.4 значениям λ и v. Гамма-излучение, обладающее значительной проникающей способностью, переходит в излучение очень больших энергий, называемое космическими лучами.

    В табл. 5.5 приведены некоторые техногенные источники ЭМП, работающие в различных диапазонах электромагнитного спектра.

    Таблица 5.5. Техногенные источники ЭМП

    Название

    Диапазон частот (длин волн)

    Радиотехнические объекты

    30 кГц...30 МГц

    Радиопередающие станции

    30 кГц...300 МГц

    Радиолокационные и радионави­гационные станции

    СВЧ-диапазон (300 МГц- 300 ГГц)

    Телевизионные станции

    30 МГц...З ГГц

    Плазменные установки

    Видимый, ИК-, УФ-диапазоны

    Термические установки

    Видимый, ИК-диапазон

    Высоковольтные линии электро­передач

    Промышленные частоты, статическое элек­тричество

    Рентгеновские установки

    Жесткий УФ-, рентгеновский диапазон, ви­димое свечение

    Оптический диапазон

    СВЧ-диапазон

    Технологические установки

    ВЧ-, СВЧ-, ИК-, УФ-, видимый, рентгенов­ский диапазоны

    Ядерные реакторы

    Рентгеновское иγ-излучение, ИК-, видимое и т. п.

    Источники ЭМП специального назначения (наземные, водные, подводные, воздушные), применяе­мые в радиоэлектронном противо­действии

    Радиоволны, оптический диапазон, акусти­ческие волны (комби нированность действия)