Волновой эксперимент юнга. Эксперимент с двойной щелью юнга

Волновой эксперимент юнга. Эксперимент с двойной щелью юнга

print

В исследовании поведения квантовых частиц учёные из Австралийского национального университета подтвердили, что квантовые частицы могут вести себя настолько странно, что кажется, будто они нарушают принцип причинности.

Этот принцип - один из фундаментальных законов, который мало кто оспаривает. Хотя многие физические величины и явления не меняются, если мы обратим время вспять (являются Т-чётными), существует фундаментальный эмпирически установленный принцип: событие А может влиять на событие Б, только если событие Б произошло позже. С точки зрения классической физики - просто позже, с точки зрения СТО - позже в любой системе отсчёта, т.е., находится в световом конусе с вершиной в А.

Пока что только фантасты сражаются с «парадоксом убитого дедушки» (вспоминается рассказ, в котором оказалось, что дедушка вообще был ни при чём, а надо было заниматься бабушкой). В физике путешествие в прошлое обычно связано с путешествием быстрее скорости света, а с этим пока было всё спокойно.

Кроме одного момента - квантовой физики. Там вообще много странного. Вот, например, классический эксперимент с двумя щелями. Если мы поместим препятствие со щелью на пути источника частиц (например, фотонов), а за ним поставим экран, то на экране мы увидим полоску. Логично. Но если мы сделаем в препятствии две щели, то на экране мы увидим не две полоски, а картину интерференции. Частицы, проходя сквозь щели, начинают вести себя, как волны, и интерферируют друг с другом.

Чтобы исключить возможность того, что частицы на лету сталкиваются друг с другом и оттого не рисуют на нашем экране две чёткие полосы, можно выпускать их поодиночке. И всё равно, через какое-то время на экране нарисуется интерференционная картина. Частицы волшебным образом интерферируют сами с собою! Это уже гораздо менее логично. Выходит, что частица проходит сразу через две щели - иначе, как она сможет интерферировать?

А дальше - ещё интереснее. Если мы попытаемся понять, через какую всё-таки щель проходит частица, то при попытке установить этот факт частицы мгновенно начинают вести себя, как частицы и перестают интерферировать сами с собою. То есть, частицы практически «чувствуют» наличие детектора у щелей. Причём, интерференция получается не только с фотонами или электронами, а даже с довольно крупными по квантовым меркам частицами. Чтобы исключить возможность того, что детектор каким-то образом «портит» подлетающие частицы, были поставлены достаточно сложные эксперименты.

Например, в 2004 году был проведён эксперимент с пучком фуллеренов (молекул C 70 , содержащих 70 атомов углерода). Пучок рассеивался на дифракционной решетке, состоящей из большого числа узких щелей. При этом экспериментаторы могли контролируемо нагревать летящие в пучке молекулы посредством лазерного луча, что позволяло менять их внутреннюю температуру (среднюю энергию колебаний атомов углерода внутри этих молекул).

Любое нагретое тело испускает тепловые фотоны, спектр которых отражает среднюю энергию переходов между возможными состояниями системы. По нескольким таким фотонам можно, в принципе, с точностью до длины волны испускаемого кванта, определить траекторию испустившей их молекулы. Чем выше температура и, соответственно, меньше длина волны кванта, тем с большей точностью мы могли бы определить положение молекулы в пространстве, а при некоторой критической температуре точность окажется достаточна для определения, на какой конкретно щели произошло рассеяние.

Соответственно, если бы кто-то окружил установку совершенными детекторами фотонов, то он, в принципе, мог бы установить, на какой из щелей дифракционной решетки рассеялся фуллерен. Другими словами, испускание молекулой квантов света дало бы экспериментатору ту информацию для разделения компонент суперпозиции, которую нам давал пролетный детектор. Однако никаких детекторов вокруг установки не было.

В эксперименте было обнаружено, что в отсутствии лазерного нагрева наблюдается интерференционная картина, совершенно аналогичная картине от двух щелей в опыте с электронами. Включение лазерного нагрева приводит сначала к ослаблению интерференционного контраста, а затем, по мере роста мощности нагрева, к полному исчезновению эффектов интерференции. Было установлено, что при температурах T < 1000K молекулы ведут себя как квантовые частицы, а при T > 3000K, когда траектории фуллеренов «фиксируются» окружающей средой с необходимой точностью - как классические тела.

Таким образом, роль детектора, способного выделять компоненты суперпозиции, оказалась способна выполнять окружающая среда. В ней при взаимодействии с тепловыми фотонами в той или иной форме и записывалась информация о траектории и состоянии молекулы фуллерена. И совершенно не важно, через что идет обмен информацией: через специально поставленный детектор, окружающую среду или человека.

Для разрушения когерентности состояний и исчезновения интерференционной картины имеет значение только принципиальное наличие информации, через какую из щелей прошла частица - а кто ее получит, и получит ли, уже не важно. Важно только, что такую информацию принципиально возможно получить.

Вам кажется, что это - самое странное проявление квантовой механики? Как бы не так. Физик Джон Уиллер предложил в конце 70-х мысленный эксперимент, который он назвал «эксперимент с отложенным выбором». Рассуждения его были просты и логичны.

Хорошо, допустим, что фотон каким-то неведомым способом узнаёт, что его будут или не будут пытаться обнаружить, до подлёта к щелям. Ведь ему надо как-то определиться - вести себя, как волна, и проходить через обе щели сразу (чтобы в дальнейшем уложиться в интерференционную картину на экране), или же прикинуться частицей, и пройти только через одну из двух щелей. Но ему это нужно сделать до того, как он пройдёт через щели, так ведь? После этого уже поздно - там либо лети, как маленький шарик, либо интерферируй по полной программе.

Так давайте, предложил Уиллер, расположим экран подальше от щелей. А за экраном ещё поставим два телескопа, каждый из которых будет сфокусирован на одной из щелей, и будет реагировать только на прохождение фотона через одну из них. И будем произвольным образом убирать экран после того, как фотон пройдёт щели, как бы он их ни решил проходить.

Если мы не будем убирать экран, то по идее, на нём всегда должна быть картина интерференции. А если мы будем его убирать - тогда либо фотон попадёт в один из телескопов, как частица (он прошёл через одну щель), либо оба телескопа увидят более слабое свечение (он прошёл через обе щели, и каждый из них увидел свой участок интерференционной картины).

В 2006 году прогресс в физике позволил учёным поставить такой эксперимент с фотоном на самом деле. Выяснилось, что если экран не убирают, на нём всегда видна картина интерференции, а если убирают - то всегда можно отследить, через какую щель прошёл фотон. Рассуждая с точки зрения привычной нам логики, мы приходим к неутешительному выводу. Наше действие по решению, убираем мы экран или нет, влияло на поведение фотона, несмотря на то, что действие находится в будущем по отношению к «решению» фотона о том, как ему проходить щели. То есть, либо будущее влияет на прошлое, либо в интерпретации происходящего в эксперименте со щелями есть что-то в корне неправильное.

Австралийские учёные повторили этот эксперимент, только вместо фотона они использовали атом гелия. Важным отличием этого эксперимента является тот факт, что атом, в отличие от фотона, обладает массой покоя, а также разными внутренними степенями свободы. Только вместо препятствия со щелями и экрана они использовали сетки, созданные при помощи лазерных лучей. Это дало им возможность сразу же получать информацию о поведении частицы.

Как и следовало ожидать (хотя, с квантовой физикой вряд ли стоит что-то ожидать), атом повёл себя точно так же, как фотон. Решение о том, будет или нет существовать на пути атома «экран», принималось на основании работы квантового генератора случайных чисел. Генератор был по релятивистским меркам разделён с атомом, то есть никакого взаимодействия между ними быть не могло.

Получается, что отдельные атомы, имеющие массу и заряд, ведут себя точно так же, как отдельные фотоны. И пусть это не самый прорывной в квантовой области опыт, но он подтверждает тот факт, что квантовый мир совсем не такой, каким мы можем его себе представлять.

  • квантовый объект (вроде электрона) может быть более чем в одном месте в одно время. Он может быть измерен как волна, размазанная в пространстве, и может располагаться в нескольких различных точках по всей волне. Это называется свойство волны.
  • квантовый объект перестает существовать здесь и спонтанно возникает там без перемещения в пространстве. Это известно как квантовый переход. По сути это телепорт.
  • проявление одного квантового объекта, вызванное нашими наблюдениями, спонтанно влияет на связанный с ним объект-близнец, вне зависимости от того, как далеко тот находится. Выбейте электрон и протон из атома. Что бы ни случилось с электроном, то же произойдет с протоном. Это называется «квантовое действие на расстоянии».
  • квантовый объект не может проявиться в обычном пространстве-времени, пока мы не будем наблюдать его как частицу. Сознание разрушает волновую функцию частицы.

Последний пункт интересен тем, что без осознанного наблюдателя, который заставляет волну коллапсировать, она будет оставаться без физического проявления. Наблюдение не только беспокоит измеряемый объект, оно вызывает эффект. Это было проверено так называемым двухщелевым экспериментом, когда присутствие сознательного наблюдателя изменяет поведение электрона, превращая его из волны в частицу. Так называемый эффект наблюдателя полностью потрясает то, что мы знаем о реальном мире. Вот, кстати, мультфильм, в котором все наглядно показано.

Как отмечал ученый Дин Радин, «мы заставляем электрон занимать определенную позицию. Мы сами производим результаты измерения». Теперь же полагают, что «это не мы измеряем электрон, а машина, которая стоит за наблюдением». Но машина просто дополняет наше сознание. Это все равно что сказать «это не я смотрю на того, кто переплывает озеро, это бинокль». Машина сама по себе видит не больше, чем компьютер, который может «слушать» песни, интерпретируя звуковой сигнал.

Некоторые ученые предполагают, что без сознания вселенная будет существовать неопределенно, как море квантового потенциала. Другими словами, физическая реальность не может существовать без субъективности. Без сознания нет физической материи. Это замечание известно как « », и его впервые вывел физик Джон Уилер. По сути, любая возможная вселенная, которую мы можем представить без сознательного наблюдателя, уже будет с ним. Сознание представляет собой основу бытия в таком случае и существовало, возможно, до возникновения физической вселенной. Сознание буквально создает физический мир.

Эти выводы гарантируют огромные последствия тому, как мы понимаем свою взаимосвязь с внешним миром, и какого рода отношения могут быть у нас со Вселенной. Как живые существа, мы обладаем прямым доступом ко всему сущему и фундаменту всего физически существующего. Это нам позволяет сознание. «Мы создаем реальность» означает в данном контексте то, что наши мысли создают перспективу того, что мы есть в нашем мире, но если разобраться, нам важно точное понимание этого процесса. Мы порождаем физическую вселенную своей субъективностью. Ткань вселенной - это сознание, а мы - просто рябь на море вселенной. Получается, нам повезло испытать чудо такой жизни, а Вселенная продолжает вливать в нас часть своего самосознания.

«Я считаю сознание фундаментальным. Я считаю материю производным от сознания. Мы не можем оставаться без сознания. Все, о чем мы говорим, все, что мы видим как существующее, постулирует сознание». - Макс Планк, лауреат Нобелевской премии и пионер квантовой теории.

Согласно опросу знаменитых физиков, проведенному The New York Times, эксперимент с дифракцией электронов является одним из самых удивительных исследований в истории науки. Какова его природа? Существует источник, который излучает пучок электронов на светочувствительный экран. И есть препятствие на пути этих электронов, медная пластина с двумя щелями.

Какую картинку можно ожидать на экране, если электроны обычно представляются нам небольшими заряженными шариками? Две полосы напротив прорезей в медной пластине. Но на самом деле на экране появляется куда более сложный узор из чередующихся белых и черных полос. Это связано с тем, что при прохождении через щель электроны начинают вести себя не только как частицы, но и как волны (так же ведут себя фотоны или другие легкие частицы, которые могут быть волной в то же время).

Эти волны взаимодействуют в пространстве, сталкиваясь и усиливая друг друга, и в результате сложный рисунок из чередующихся светлых и темных полос отображается на экране. В то же время результат этого эксперимента не изменяется, даже если электроны проходят один за одним - даже одна частица может быть волной и проходить одновременно через две щели. Этот постулат был одним из основных в Копенгагенской интерпретации квантовой механики, когда частицы могут одновременно демонстрировать свои «обычные» физические свойства и экзотические свойства как волна.

Но как насчет наблюдателя? Именно он делает эту запутанную историю еще более запутанной. Когда физики во время подобных экспериментов попытались определить с помощью инструментов, через какую щель фактически проходит электрон, картинка на экране резко изменилась и стала «классической»: с двумя освещенными секциями строго напротив щелей, безо всяких чередующихся полос.

Электроны, казалось, не хотят открывать свою волновую природу бдительному оку наблюдателей. Похоже на тайну, покрытую мраком. Но есть и более просто объяснение: наблюдение за системой не может осуществляться без физического влияния на нее. Это мы обсудим позже.

2. Подогретые фуллерены


Эксперименты по дифракции частиц проводились не только с электронами, но и другими, гораздо более крупными объектами. Например, использовались фуллерены, большие и закрытые молекулы, состоящие из нескольких десятков атомов углерода. Недавно группа ученых из Венского университета под руководством профессора Цайлингера пыталась включить элемент наблюдения в эти эксперименты. Чтобы сделать это, они облучали движущиеся молекулы фуллеренов лазерными лучами. Затем, нагретые внешним источником, молекулы начинали светиться и неизбежно отображать свое присутствие для наблюдателя.

Вместе с этим нововведением изменилось и поведение молекул. До начала такого всеобъемлющего наблюдения фуллерены довольно успешно избегали препятствия (проявляя волновые свойства), аналогично предыдущему примеру с электронами, попадающими на экран. Но с присутствием наблюдателя фуллерены стали вести себя как совершенно законопослушные физические частицы.

3. Охлаждающее измерение


Одним из самых известных законов в мире квантовой физики является , согласно которому невозможно определить скорость и положение квантового объекта одновременно. Чем точнее мы измеряем импульс частицы, тем менее точно мы можем измерить ее позицию. Однако в нашем макроскопическом реальном мире обоснованность квантовых законов, действующих на крошечные частицы, обычно остается незамеченной.

Недавние эксперименты профессора Шваба из США вносят весьма ценный вклад в эту область. Квантовые эффекты в этих экспериментах были продемонстрированы не на уровне электронов или молекул фуллеренов (примерный диаметр которых составляет 1 нм), а на более крупных объектах, крошечной алюминиевой ленте. Эта лента была зафиксирована с обеих сторон так, чтобы ее середина находилась в подвешенном состоянии и могла вибрировать под внешним воздействием. Кроме того, рядом было помещено устройство, способное точно записывать положение ленты. В результате эксперимента обнаружилось несколько интересных вещей. Во-первых, любое измерение, связанное с положением объекта, и наблюдение за лентой влияло на нее, после каждого измерения положение ленты изменялось.

Экспериментаторы определили координаты ленты с высокой точностью, и таким образом, в соответствии с принципом Гейзенберга, изменили ее скорость, а значит и последующее положение. Во-вторых, что было довольно неожиданным, некоторые измерения привели к охлаждению ленты. Таким образом, наблюдатель может изменить физические характеристики объектов одним своим присутствием.

4. Замерзающие частицы


Как известно, нестабильные радиоактивные частицы распадаются не только в экспериментах с котами, но и сами по себе. Каждая частица имеет средний срок жизни, который, как выясняется, может увеличиться под бдительным оком наблюдателя. Этот квантовый эффект был предсказан еще в 60-х годах, а его блестящее экспериментальное доказательство появилось в статье, опубликованной группой под руководством нобелевского лауреата по физике Вольфганга Кеттерле из Массачусетского технологического института.

В этой работе изучался распад нестабильных возбужденных атомов рубидия. Сразу после подготовки системы атомы возбуждались с помощью лазерного луча. Наблюдение проходило в двух режимах: непрерывном (система постоянно подвергалась небольшим световым импульсам) и импульсном (система время от времени облучалась более мощными импульсами).

Полученные результаты полностью соответствовали теоретическим предсказаниям. Внешние световые эффекты замедляют распад частиц, возвращая их в исходное состояние, которое далеко от состояния распада. Величина этого эффекта также совпадала с прогнозами. Максимальный срок существования нестабильных возбужденных атомов рубидия увеличивался в 30 раз.

5. Квантовая механика и сознание


Электроны и фуллерены перестают показывать свои волновые свойства, алюминиевые пластинки остывают, а нестабильные частицы замедляют свой распад. Бдительное око наблюдателя буквально меняет мир. Почему это не может быть доказательством причастности наших умов к работе мира? Возможно, Карл Юнг и Вольфганг Паули (австрийский физик, лауреат Нобелевской премии, пионер квантовой механики) были правы, в конце концов, когда заявили, что законы физики и сознания следует рассматривать как дополняющие одно другое?

Мы находимся в одном шаге от признания того, что мир вокруг нас - . Идея страшная и заманчивая. Давайте попробуем снова обратиться к физикам. Особенно в последние годы, когда все меньше и меньше людей верят Копенгагенской интерпретации квантовой механики с ее загадочными коллапсами волновой функции, обращаясь к более приземленной и надежной декогеренции.

Дело в том, что во всех этих экспериментах с наблюдениями экспериментаторы неизбежно влияли на систему. Они зажигали ее с помощью лазера и устанавливали измерительные приборы. Их объединял важный принцип: вы не можете наблюдать за системой или измерять ее свойства, не взаимодействуя с ней. Любое взаимодействие есть процесс модификации свойств. Особенно когда крошечная квантовая система подвергается воздействию колоссальных квантовых объектов. Некий вечно нейтральный буддист-наблюдатель невозможен в принципе. И здесь в игру вступает термин «декогеренция», который является необратимым с точки зрения термодинамики: квантовые свойства системы меняются при взаимодействии с другой крупной системой.

Во время этого взаимодействия квантовая система теряет свои первоначальные свойства и становится классической, словно «подчиняясь» крупной системе. Это объясняет и парадокс кота Шредингера: кот - это слишком большая система, поэтому ее нельзя изолировать от остального мира. Сама конструкция этого мысленного эксперимента не совсем корректна.

В любом случае, если допустить реальность акта творения сознанием, декогеренция представляется гораздо более удобным подходом. Возможно, даже слишком удобным. При таком подходе весь классический мир становится одним большим следствием декогеренции. И как заявил автор одной из самых известных книг в этой области, такой подход логически приводит к заявлениям типа «в мире нет частиц» или «нет времени на фундаментальном уровне».

В чем правда: в создателе-наблюдателе или мощной декогеренции? Нам нужно выбрать между двух зол. Тем не менее ученые все больше убеждаются в том, что квантовые эффекты - проявление наших психических процессов. И то, где заканчивается наблюдение и начинается реальность, зависит от каждого из нас.

По материалам topinfopost.com

Никто в мире не понимает квантовую механику - это главное, что нужно о ней знать. Да, многие физики научились пользоваться ее законами и даже предсказывать явления по квантовым расчетам. Но до сих пор непонятно, почему присутствие наблюдателя определяет судьбу системы и заставляет ее сделать выбор в пользу одного состояния. «Теории и практики» подобрали примеры экспериментов, на исход которых неминуемо влияет наблюдатель, и попытались разобраться, что квантовая механика собирается делать с таким вмешательством сознания в материальную реальность.

Кот Шредингера

Сегодня существует множество интерпретаций квантовой механики, самой популярной среди которых остается копенгагенская. Ее главные положения в 1920-х годах сформулировали Нильс Бор и Вернер Гейзенберг. А центральным термином копенгагенской интерпретации стала волновая функция - математическая функция, заключающая в себе информацию обо всех возможных состояниях квантовой системы, в которых она одновременно пребывает.

По копенгагенской интерпретации, доподлинно определить состояние системы, выделить его среди остальных может только наблюдение (волновая функция только помогает математически рассчитать вероятность обнаружить систему в том или ином состоянии). Можно сказать, что после наблюдения квантовая система становится классической: мгновенно перестает сосуществовать сразу во многих состояниях в пользу одного из них.

У такого подхода всегда были противники (вспомнить хотя бы «Бог не играет в кости» Альберта Эйнштейна), но точность расчетов и предсказаний брала свое. Впрочем, в последнее время сторонников копенгагенской интерпретации становится все меньше и не последняя причина тому - тот самый загадочный мгновенный коллапс волновой функции при измерении. Знаменитый мысленный эксперимент Эрвина Шредингера с бедолагой-котом как раз был призван показать абсурдность этого явления.

Итак, напоминаем содержание эксперимента. В черный ящик помещают живого кота, ампулу с ядом и некий механизм, который может в случайный момент пустить яд в действие. Например, один радиоактивный атом, при распаде которого разобьется ампула. Точное время распада атома неизвестно. Известен лишь период полураспада: время, за которое распад произойдет с вероятностью 50%.

Получается, что для внешнего наблюдателя кот внутри ящика существует сразу в двух состояниях: он либо жив, если все идет нормально, либо мертв, если распад произошел и ампула разбилась. Оба этих состояния описывает волновая функция кота, которая меняется с течением времени: чем дальше, тем больше вероятность, что радиоактивный распад уже случился. Но как только ящик открывается, волновая функция коллапсирует и мы сразу видим исход живодерского эксперимента.

Выходит, пока наблюдатель не откроет ящик, кот так и будет вечно балансировать на границе между жизнью и смертью, а определит его участь только действие наблюдателя. Вот абсурд, на который указывал Шредингер.

Дифракция электронов

По опросу крупнейших физиков, проведенному газетой The New York Times, опыт с дифракцией электронов, поставленный в 1961 году Клаусом Йенсоном, стал одним из красивейших в истории науки. В чем его суть?

Есть источник, излучающий поток электронов в сторону экрана-фотопластинки. И есть преграда на пути этих электронов - медная пластинка с двумя щелями. Какой картины на экране можно ожидать, если представлять электроны просто маленькими заряженными шариками? Двух засвеченных полос напротив щелей.

В действительности на экране появляется гораздо более сложный узор из чередующихся черных и белых полос. Дело в том, что при прохождении через щели электроны начинают вести себя не как частицы, а как волны (подобно тому, как и фотоны, частицы света, одновременно могут быть и волнами). Потом эти волны взаимодействуют в пространстве, где-то ослабляя, а где-то усиливая друг друга, и в результате на экране появляется сложная картина из чередующихся светлых и темных полос.

При этом результат эксперимента не меняется, и если пускать электроны через щель не сплошным потоком, а поодиночке, даже одна частица может быть одновременно и волной. Даже один электрон может одновременно пройти через две щели (и это еще одно из важных положений копенгагенской интерпретации квантовой механики - объекты могут одновременно проявлять и свои «привычные» материальные свойства, и экзотические волновые).

Но при чем здесь наблюдатель? При том, что с ним и без того запутанная история стала еще сложнее. Когда в подобных экспериментах физики попытались зафиксировать с помощью приборов, через какую щель в действительности проходит электрон, картинка на экране резко поменялась и стала «классической»: два засвеченных участка напротив щелей и никаких чередующихся полос.

Электроны будто не захотели проявлять свою волновую природу под пристальным взором наблюдателя. Подстроились под его инстинктивное желание увидеть простую и понятную картинку. Мистика? Есть и куда более простое объяснение: никакое наблюдение за системой нельзя провести без физического воздействия на нее. Но к этому вернемся еще чуть позже.

Нагретый фуллерен

Опыты по дифракции частиц ставили не только на электронах, но и на куда больших объектах. Например, фуллеренах - крупных, замкнутых молекулах, составленных из десятков атомов углерода (так, фуллерен из шестидесяти атомов углерода по форме очень похож на футбольный мяч: полую сферу, сшитую из пяти- и шестиугольников).

Недавно группа из Венского университета во главе с профессором Цайлингером попыталась внести элемент наблюдения в подобные опыты. Для этого они облучали движущиеся молекулы фуллерена лазерным лучом. После, нагретые внешним воздействием, молекулы начинали светиться и тем неминуемо обнаруживали для наблюдателя свое место в пространстве.

Вместе с таким нововведением поменялось и поведение молекул. До начала тотальной слежки фуллерены вполне успешно огибали препятствия (проявляли волновые свойства) подобно электронам из прошлого примера, проходящим сквозь непрозрачный экран. Но позже, с появлением наблюдателя, фуллерены успокоились и стали вести себя как вполне законопослушные частицы материи.

Охлаждающее измерение

Одним из самых известных законов квантового мира является принцип неопределенности Гейзенберга: невозможно одновременно установить положение и скорость квантового объекта. Чем точнее измеряем импульс частицы, тем менее точно можно измерить ее положение. Но действие квантовых законов, работающих на уровне крошечных частиц, обычно незаметно в нашем мире больших макрообъектов.

Потому тем ценнее недавние эксперименты группы профессора Шваба из США, в которых квантовые эффекты продемонстрировали не на уровне тех же электронов или молекул фуллерена (их характерный диаметр - около 1 нм), а на чуть более ощутимом объекте - крошечной алюминиевой полоске.

Эту полоску закрепили с обеих сторон так, чтобы ее середина была в подвешенном состоянии и могла вибрировать под внешним воздействием. Кроме того, рядом с полоской находился прибор, способный с высокой точностью регистрировать ее положение.

В результате экспериментаторы обнаружили два интересных эффекта. Во-первых, любое измерение положения объекта, наблюдение за полоской не проходило для нее бесследно - после каждого измерения положение полоски менялось. Грубо говоря, экспериментаторы с большой точностью определяли координаты полоски и тем самым, по принципу Гейзенберга, меняли ее скорость, а значит и последующее положение.

Во-вторых, что уже совсем неожиданно, некоторые измерения еще и приводили к охлаждению полоски. Получается, наблюдатель может лишь одним своим присутствием менять физические характеристики объектов. Звучит совсем невероятно, но к чести физиков скажем, что они не растерялись - теперь группа профессора Шваба думает, как применить обнаруженный эффект для охлаждения электронных микросхем.

Замирающие частицы

Как известно, нестабильные радиоактивные частицы распадаются в мире не только ради экспериментов над котами, но и вполне сами по себе. При этом каждая частица характеризуется средним временем жизни, которое, оказывается, может увеличиваться под пристальным взором наблюдателя.

Впервые этот квантовый эффект предсказали еще в 1960-х годах, а его блестящее экспериментальное подтверждение появилось в статье , опубликованной в 2006 году группой нобелевского лауреата по физике Вольфганга Кеттерле из Массачусетского технологического института.

В этой работе изучали распад нестабильных возбужденных атомов рубидия (распадаются на атомы рубидия в основном состоянии и фотоны). Сразу после приготовления системы, возбуждения атомов за ними начинали наблюдать - просвечивать их лазерным пучком. При этом наблюдение велось в двух режимах: непрерывном (в систему постоянно подаются небольшие световые импульсы) и импульсном (система время от времени облучается импульсами более мощными).

Полученные результаты отлично совпали с теоретическими предсказаниями. Внешние световые воздействия действительно замедляют распад частиц, как бы возвращают их в исходное, далекое от распада состояние. При этом величина эффекта для двух исследованных режимов также совпадает с предсказаниями. А максимально жизнь нестабильных возбужденных атомов рубидия удалось продлить в 30 раз.

Квантовая механика и сознание

Электроны и фуллерены перестают проявлять свои волновые свойства, алюминиевые пластинки охлаждаются, а нестабильные частицы замирают в своем распаде: под всесильным взором наблюдателя мир меняется. Чем не свидетельство вовлеченности нашего разума в работу мира вокруг? Так может быть правы были Карл Юнг и Вольфганг Паули (австрийcкий физик, лауреат Нобелевской премии, один из пионеров квантовой механики), когда говорили, что законы физики и сознания должны рассматриваться как взаимодополняющие?

Но так остается только один шаг до дежурного признания: весь мир вокруг суть нашего разума. Жутковато? («Вы и вправду думаете, что Луна существует лишь когда вы на нее смотрите?» - комментировал Эйнштейн принципы квантовой механики). Тогда попробуем вновь обратиться к физикам. Тем более, в последние годы они все меньше жалуют копенгагенскую интерпретацию квантовой механики с ее загадочным коллапсом волной функции, на смену которому приходит другой, вполне приземленный и надежный термин - декогеренция.

Дело вот в чем - во всех описанных опытах с наблюдением экспериментаторы неминуемо воздействовали на систему. Подсвечивали ее лазером, устанавливали измеряющие приборы. И это общий, очень важный принцип: нельзя пронаблюдать за системой, измерить ее свойства не провзаимодействовав с ней. А где взаимодействие, там и изменение свойств. Тем более, когда с крошечной квантовой системой взаимодействуют махины квантовых объектов. Так что вечный, буддистский нейтралитет наблюдателя невозможен.

Как раз это объясняет термин «декогеренция» - необратимый с точки зрения процесс нарушения квантовых свойств системы при ее взаимодействии с другой, крупной системой. Во время такого взаимодействия квантовая система утрачивает свои изначальные черты и становится классической, «подчиняется» системе крупной. Этим и объясняется парадокс с котом Шредингера: кот представляет собой настолько большую систему, что его просто нельзя изолировать от мира. Сама постановка мысленного эксперимента не совсем корректна.

В любом случае, по сравнению с реальностью как актом творения сознания, декогеренция звучит куда более спокойно. Даже, может быть, слишком спокойно. Ведь с таким подходом весь классический мир становится одним большим эффектом декогеренции. А как утверждают авторы одной из самых серьезных книг в этой области, из таких подходов еще и логично вытекают утверждения вроде «в мире не существует никаких частиц» или «не существует никакого времени на фундаментальном уровне».

Созидающий наблюдатель или всесильная декогеренция? Приходится выбирать из двух зол. Но помните - сейчас ученые все больше убеждаются, что в основе наших мыслительных процессов лежат те самые пресловутые квантовые эффекты. Так что где заканчивается наблюдение и начинается реальность - выбирать приходится каждому из нас.

> Эксперимент с двойной щелью Юнга

Изучите опыт Юнга с щелями . Читайте, какое расстояние между щелями в опыте Юнга, ширина полосы и два отверстия, характеристика света как волны, эксперимент.

В своем эксперименте Томас Юнг показал, что вещество и энергия способны показывать характеристики волн и частиц.

Задача обучения

  • Понять, почему эксперимент Юнга кажется правдоподобнее выражений Гюйгенса.

Основные пункты

  • Волновые характеристики приводят к тому, что проходящий сквозь щель свет мешает себе, формируя светлые и темные участки.
  • Если волны мешают в гребнях, но сходятся по фазе, то сталкиваемся с конструктивными помехами. Если волны полностью не совпадают, то это разрушительные помехи.
  • У каждой точки на стене есть разная дистанция к щели. Этим путям соответствует разное количество волн.

Термины

  • Разрушительные помехи – волны мешают и не соответствуют друг другу.
  • Конструктивные помехи – волны мешают в гребнях, но совпадают по фазе.

В эксперименте с двойной щелью видно, что вещество и энергия способны вести себя как волны или частицы. В 1628 году Кристиан Гюйгенгс доказал, что свет выступает волной. Но некоторые люди не соглашались, особенно Исаак Ньютон. Он полагал, что для объяснения потребуются цветные интерференционные и дифракционные эффекты. До 1801 года никто не верил, что свет – волна, пока не появился Томас Юнг со своим экспериментом с двойной щелью - опыт Юнга. Он сделал две близко поставленных вертикальных щели (примерное расстояние между щелями в опыте Юнга можно увидеть на нижней схеме) и пустил сквозь них свет, наблюдая за созданным на стене узором.

Свет проходит сквозь две вертикальных щели и дифрагируется в виде двух вертикальных линий, расположенных горизонтально. Если бы не дифракция и интерференция, то свет просто создал две линии

Двойственность волновых частичек

Из-за волновых характеристик свет проходит сквозь щели и сталкивается, формируя светлые и темные регионы на стене. Он рассеивается и поглощается стеной, приобретая черты частиц.

Эксперимент Юнга

Почему опыт Юнга с двумя щелями всех убедил? Гюйгенс оказался изначально прав, но ему не удавалось показать на практике свои выводы. Свет обладает относительно короткими длинами волн, поэтому для демонстрации обязан контактировать с чем-то небольшим.

В примере используется два когерентных световых источника с одной монохроматической длиной волны (в единой фазе). То есть, два источника будут создавать конструктивные или деструктивные помехи.

Конструктивные и деструктивные помехи

Конструктивные помехи появляются, если волны мешают по гребням, но совпадают в фазе. Это будет усиливать результирующую волну. Деструктивные мешают друг другу полностью и не совпадают, что отменяет волну.

Две щели формируют два когерентных волновых источника, мешающих друг другу. (а) – Свет рассеивается от каждой щели, из-за их узости. Волны перекрываются и мешают конструктивно (яркие линии) и деструктивно (темные участки). (b) – Узор двойной щели для водных волн практически совпадает со световыми. Наибольшая активность заметна на участках с деструктивными помехами. (с) – При попадании света на экран, мы сталкиваемся с подобным шаблоном

Волновые амплитуды складываются. (а) – Чистая конструктивная помеха возможна, если одинаковые волны сходятся по фазе. (b) – Чистая деструктивная помеха – одинаковые волны точно не сходятся по фазе

Созданный узор не будет случайным. Каждая щель расположена на определенной дистанции. Все волны начинаются с одной фазы, но дистанция от точки на стене к щели создает тип помехи.