Основные типы гибридизации. Типы гибридизации АО

Основные типы гибридизации. Типы гибридизации АО

Гибридизация атомных орбиталей

Американский ученый Л. Полинг выдвинул идею о гибридизации атомных орбиталей. Согласно этой идее, если у атома, вступающего в химическую связь, имеются разные атомные орбитали (АО) (s-, p-, d- или f-АО), то в процессе образования химической связи происходит гибридизация АО. Т.е. из разных АО образуются одинаковые (эквивалентные) АО. У атома гибридизуются орбитали, которые имеют близкие значения энергий. Идея о гибридизации АО – это удобный и наглядный прием описания сложных процессов, происходящих при образовании химических соединений. Форма гибридной АО отличается от формы исходных АО (рис. 4.3).

Рис. 4.3. Атомная sp-гибридная орбиталь

В гибридной АО электронная плотность смещается в одну сторону от ядра. При взаимодействии гибридной орбитали с АО другого атома происходит перекрывание в области максимальной электронной плотности, что приводит к повышению энергии связи. Это повышение энергии связи компенсирует энергию, требуемую на образование гибридной орбитали. В результате химические связи, образованные гибридными орбиталями, прочнее, а полученная молекула более устойчива.

Если в химическую связь вступает атом, у которого на внешнем валентном уровне имеются один s- и один p-электроны, то у данного атома в процессе образования связи происходит sp-гибридизация АО (рис. 4.4).


Рис. 4.4. Схема sp-гибридизации

Если у атома, вступающего в химическую связь, на внешней оболочке имеются один s- и два p-электрона, то помимо sp-гибридизации может происходить sp 2 -гибридизация АО этого атома (рис. 4.5).


Рис. 4.5. Схема sp 2 -гибридизации

У атома, имеющего на внешней оболочке один s- и три р-электрона, при химическом взаимодействии помимо sp- и sp 2 -гибридизации, может происходит sp 3 -гибридизация этих АО (рис. 4.6).


Рис. 4.6. Схема sp 3 -гибридизации

Возможны также более сложные виды гибридизации с участием d-орбиталей атомов (табл. 4.3).

Как видно из рис 4.4-4.6, гибридные облака в пространстве располагаются симметрично относительно друг друга, что уменьшает их взаимное отталкивание и соответственно понижает энергию молекул.

Таблица 4.3

Пространственная конфигурация некоторых соединений

4.1.4.2. Образование σ-, π- и δ-связей

В зависимости от направления перекрывания электронных облаков образуются s-, p- и δ-связи.

Связь, образованная перекрыванием АО по линии, соединяющей ядра взаимодействующих атомов, называется s-связью. Сигма-связь может возникать при перекрывании двух s-орбиталей (рис. 4.7), s- и p-орбиталей, p-орбиталей между собой, d-орбиталей, а также d- и s-орбиталей, d- и p-орбиталей, а также перекрыванием гибридных орбиталей с другими видами орбиталей и между собой. Сигма-связь обычно охватывает два атома и не простирается за их пределы, поэтому является локализованной двухцентровой связью.

s-s p-p p-s
sp n -s d-sp n sp n -sp n

Рис. 4.7. Перекрывание атомных орбиталей при образовании σ-связей

Связь, образованная перекрыванием негибридных р- и d-АО по обе стороны линии, соединяющей ядра атомов (боковые перекрывания), называется π-связью. Пи-связь может образовываться при перекрывании р-р-орбиталей, р-d – орбиталей, d- d-орбиталей (рис. 4.8), а также f-p-, f-d- и f-f-орбиталей.

Рис. 4.8. Перекрывание атомных орбиталей при образовании π-связей

Связь, образованная перекрыванием d-орбиталей всеми четырьмя лепестками, называется δ-связью (рис. 4.9).

Соответственно, s-элементы могут образовывать только σ-связи, p-элементы – σ- и π-связи, d-элементы σ-, π-, и δ-связи, а f-элементы – σ-, π-, δ- и еще более сложные связи. В связи с меньшим перекрыванием АО прочность у π- и δ-связей ниже, чем у σ-связей.


Рис. 4.9. Направление перекрывания атомных d-орбиталей при образовании δ-связей

Задача 261.
Какие типы гибридизации АО углерода соответствуют образованию молекул СН 4 , С 2 Н 6 , С 2 Н 4 , С 2 Н 2 ?
Решение:
а) В молекулах СН 4 и С 2 Н 6 валентный электронный слой атома углерода содержит четыре электронных пары:

Поэтому электронные облака атома углерода в молекулах СН 4 , С 2 Н 6 будут максимально удалены друг от друга при sp3-гибридизации, когда их оси направлены к вершинам тетраэдра. При этом в молекуле СН 4 все вершины тетраэдра будут заняты атомами водорода, так что молекула СН4 имеет тетраэдрическую конфигурацию с атомом углерода в центре тетраэдра. В молекуле С 2 Н 6 атомы водорода занимают три вершины тетраэдра, а к четвёртой вершине направлено общее электронное облако другого атома углерода, т.е. два атома углерода соединены друг с другом. Это можно представить схемами:

б) В молекуле С 2 Н 4 валентный электронный слой атома углерода, как и в молекулах СН 4 , С 2 Н 6 . содержит четыре электронные пары:

При образовании С 2 Н 4 три ковалентные связи образованы по обычному механизму, т.е. являются - связями, и одна - - связь. При образовании молекулы С 2 Н 4 каждый атом углерода с двумя атомами водорода - связями и друг с другом двумя связями, одной - и одной - связями. Гибридные облака, соответствующие данному типу гибридизации, располагаются в атоме углерода так, чтобы взаимодействие между электронами было минимальным, т.е. как можно дальше друг от друга. Данное расположение атомов углерода (две двойные связи между атомами углерода) характерно для sp 2 -гибридизации АО углерода. При sp 2 -гибридизации электронные облака в атомах углерода ориентированы в направлениях, лежащих в одной плоскости и составляющих друг с другом углы в 120 0 , т.е. в направлениях к вершинам правильного треугольника. В молекуле этилена в образовании - связей участвуют три sp 2 -гибридные орбитали каждого атома углерода, две между двумя атомами водорода и одна со вторым атомом углерода, а - связь образуется за счёт р-электронных облаков каждого атома углерода. Структурная формула молекулы С 2 Н 4 будет иметь вид:

в) В молекуле С 2 Н 2 валентный электронный слой атома углерода содержит четыре пары электронов:

Структурная формула С 2 N 2 имеет вид:

Каждый атом углерода соединён одной электронной парой с атомом водорода и тремя электронными парами с другим атомом углерода. Таким образом, в молекуле ацетилена атомы углерода соединены друг с другом одной -связью и двум -связями. С водородом каждый атом углерода соединён -связью. В образовании - связей участвуют две sp-гибридные АО, которые расположены друг относительно друга так, что взаимодействие между ними минимальное, т.е. как можно дальше друг от друга. Поэтому при sp-гибридизации электронные облака между атомами углерода ориентированы в противоположных направлениях друг относительно друга, т.е. угол между связями С-С составляет 180 0 . Поэтому молекула С 2 Н 2 имеет линейное строение:

Задача 262.
Указать тип гибридизации АО кремния в молекулах SiH 4 и SiF 4 . Полярны ли эти молекулы?
Решение:
В молекулах SiH 4 и SiF 4 валентный электронный слой содержит четыре пары электронов:

Поэтому в обоих случаях электронные облака атома кремния будут максимально удалены друг от друга при sp 3 -гибридизации, когда их оси направлены к вершинам тетраэдра. При этом в молекуле SiH 4 все вершины тетраэдра заняты атомами водорода, а в молекуле SiF 4 – атомами фтора, так что эти молекулы имеют тетраэдрическую конфигурацию с атомом кремния в центре тетраэдра:

В тетраэдрических молекулах SiH 4 и SiF 4 дипольные моменты связей Si-H и Si-F взаимно компенсируют друг друга, так что суммарные дипольные моменты обоих молекул будут равны нулю. Эти молекулы неполярны, несмотря на полярность связей Si-H и Si-F.

Задача 263.
В молекулах SО 2 и SО 3 атом серы находится в состоянии sp 2 -гибридизации. Полярны ли эти молекулы? Какова их пространственная структура?
Решение:
При sp 2 -гибридизации гибридные облака располагаются в атоме серы в направлениях, лежащих в одной плоскости и составляющих друг с другом углы в 120 0 , т.е. направленных к вершинам правильного треугольника.

а) В молекуле SО 2 две sp 2 -гибридные АО образуют связь с двумя атомами кислорода, третья sp 2 -гибридная орбиталь будет занята свободной электронной парой. Эта электронная пара будет смещать электронную плоскость и молекула SО 2 примет форму неправильного треугольника, т.е. угол OSO не будет равен 120 0 . Поэтому молекула SО 2 будет иметь угловую форму при sp 2 -гибридизации орбиталей атома структуру:

В молекуле SО 2 взаимной компенсации дипольных моментов связей S-O не происходит; дипольный момент такой молекулы будет иметь значение больше нуля, т.е. молекула полярна.

б) В угловой молекуле SО 3 все три sp2-гибридные АО образуют связь с тремя атомами кислорода. Молекула SО 3 будет иметь форму плоского треугольника с sp 2 -гибридизацией атома серы:

В треугольной молекуле SО 3 дипольные моменты связей S-O взаимно компенсируют друг друга, так что суммарный дипольный момент будет равен нулю, молекула полярна.

Задача 264.
При взаимодействии SiF4 с HF образуется сильная кислота Н 2 SiF 6 , диссоциирующая на ионы Н + и SiF 6 2- . Может ли подобным образом протекать реакция между СF 4 и НF? Указать тип гибридизации АО кремния в ионе SiF 6 2- .
Решение:
а) При возбуждении атом кремния переходит из состояния 1s 2 2s 2 2p 6 3s 2 3p 3 в состояние 1s 2 2s 2 2p 6 3s 1 3p 4 3d 0 , а электронное строение валентных орбиталей соответствует схеме:

Четыре неспаренных электрона возбуждённого атома кремния могут участвовать в образовании четырёх ковалентных связей по обычному механизму с атомами фтора (1s 2 2s 2 2p 5), имеющими по одному неспаренному электрону с образованием молекулы SiF 4 .

При взаимодействии SiF 4 с HF образуется кислота Н 2 SiF 6 . Это возможно, потому что в молекуле SiF 4 имеются свободные 3d-орбитали, а в ионе F- (1s 2 2s 2 2p 6) свободные пары электронов. Связь осуществляется по донорно-акцепторному механизму за счёт пары электронов каждого из двух ионов F - (HF ↔ H + + F -) и свободных 3d-орбиталей молекулы SiF 4 . При этом образуется ион SiF 6 2- , который с ионами H + образует молекулу кислоты Н 2 SiF 6 .

б) Углерод (1s 2 2s 2 2p 2) может образовать, подобно кремнию, соединение СF 4 , ног при этом валентные возможности атома углерода будут исчерпаны (нет неспаренных электронов, свободных пар электронов и свободных валентных орбиталей на валентном уровне). Схема строения валентных орбиталей возбуждённого атома углерода имеет вид:

При образовании СF 4 все валентные орбитали углерода заняты, поэтому ион образоваться не может.

В молекуле SiF 4 валентный электронный слой атома кремния содержит четыре пары электронов:

Это же наблюдается и для молекулы СF 4 . поэтому в обоих случаях электронные облака атомов кремния и углерода будут максимально удалены друг от друга при sp3-гибридизации. Когда их оси будут направлены к вершинам тетраэдра:

Метод валентных связей позволяет наглядно объяснить пространственные характеристики многих молекул. Однако, привычного представления о формах орбиталей не достаточно для ответа на вопрос, почему при наличии у центрального атома разных – s , p , d – валентных орбиталей, образованные им связи в молекулах с одинаковыми заместителями оказываются эквивалентными по своим энергетическим и пространственным характеристикам. В двадцатые годы XIX века Лайнусом Полингом была предложена концепция гибридизации электронных орбиталей. Под гибридизацией понимают абстрактную модель выравнивания атомных орбиталей по форме и энергии.

Примеры формы гибридных орбиталей представлены в таблице 5.

Таблица 5. Гибридные sp, sp 2 , sp 3 орбитали

Концепцию гибридизации удобно использовать при объяснении геометрической формы молекул и величины валентных углов (примеры заданий 2– 5).

Алгоритм определения геометрии молекул методом ВС:

а. Определить центральный атом и количество σ-связей с концевыми атомами.

б. Составить электронные конфигурации всех атомов, входящих в состав молекулы и графические изображения внешних электронных уровней.

в. Согласно принципам метода ВС на образование каждой связи нужна пара электронов, в общем случае, по одному от каждого атома. Если неспаренных электронов центральному атому недостаточно, следует предположить возбуждение атома с переходом одного из пары электронов на более высокий энергетический уровень.

г. Предположить необходимость и тип гибридизации с учетом всех связей и, для элементов первого периода, неспаренных электронов.

д. Опираясь на вышеизложенные умозаключения изобразить электронные орбитали (гибридные или нет) всех атомов в молекуле и их перекрывание. Сделать вывод о геометрии молекулы и приблизительной величине валентных углов.

е. Определить степень полярности связи исходя из значений электроотрицательностей атомов (табл.6) Определить наличие дипольного момента исходя из расположения центров тяжести положительного и отрицательного зарядов и/или симметрии молекулы.

Таблица 6. Значения электроотрицательности некоторых элементов по Полингу


Примеры заданий

Задание 1 . Опишите методом ВС химическую связь в молекуле СО.

Решение (рис.25)

а. Составить электронные конфигурации всех атомов, входящих в состав молекулы.

б. Для образования связи необходимо создать обобществленные электронные пары

Рисунок 25. Схема образования связи в молекуле СО (без гибридизации орбиталей)

Вывод: В молекуле СО – тройная связь С≡О

Для молекулы СО можно предположить наличие sp -гибридизации орбиталей обоих атомов (рис.26). Спаренные электроны, не участвующие в образовании связи находятся на sp -гибридной орбитали.

Рисунок 26. Схема образования связи в молекуле СО (с учетом гибридизации орбиталей)

Задание 2. На основе метода ВС предположить пространственное строение молекулы BeH 2 и определить является ли молекула диполем.

Решение задачи представлено в таблице 7.

Таблица 7. Определение геометрии молекулы BeH 2

Электронная конфигурация Примечания
а. Центральный атом – бериллий. Ему необходимо образовать две ϭ-связи с атомами водорода
б. H: 1s 1 Be: 2s 2 У атома водорода есть неспаренный электрон, у атома бериллия все электроны спарены, его необходимо перевести в возбужденное состояние
в. H: 1s 1 Be*: 2s 1 2p 1 Если бы один атом водорода связывался с бериллием за счет 2s -электрона бериллия, а другой – за счет 2p -электрона бериллия, то молекула не обладала бы симметрией, что энергетически не оправдано, а связи Be–Н не были бы равноценными.
г. H: 1s 1 Be*: 2(sp ) 2 Следует предположить наличие sp -гибридизации
д. Две sp -гибридные орбитали располагаются под углом 180°, молекула BeH 2 – линейная
е. Электроотицательности χ Н =2,1, χ Be =1,5, следовательно связь ковалентная полярная, электронная плотность смещена к атому водорода, на нем появляется небольшой отрицательный заряд δ–. На атоме бериллия δ+. Так как центры тяжести положительного и отрицательного заряда совпадают (она симметрична), молекула не является диполем.

Аналогичные рассуждения помогут описать геометрию молекул с sp 2 - и sp 3 -гибридными орбиталями (табл.8).

Таблица 8. Геометрия молекул BF 3 и СН 4

Задание 3. На основе метода ВС предположить пространственное строение молекулы H 2 О и определить является ли молекула диполем. Возможно два решения, они представлены в таблицах 9 и 10.

Таблица 9. Определение геометрии молекулы H 2 O (без гибридизации орбиталей)

Электронная конфигурация Графическое изображение орбиталей внешнего уровня Примечания
а.
б. H: 1s 1 O: 2s 2 2p 4
в. Неспаренных электронов достаточно для образования двух ϭ-связей с атомами водорода.
г. Гибридизацией можно пренебречь
д.
е.

Таким образом, молекула воду, должна иметь валентный угол около 90°. Однако угол между связями примерно 104°.

Это можно объяснить

1) отталкиванием, близко расположенных друг к другу водородных атомов.

2) Гибридизацией орбиталей (табл. 10).

Таблица 10. Определение геометрии молекулы H 2 O (с учетом гибридизации орбиталей)

Электронная конфигурация Графическое изображение орбиталей внешнего уровня Примечания
а. Центральный атом – кислород. Ему необходимо образовать две ϭ-связи с атомами водорода.
б. H: 1s 1 O: 2s 2 2p 4 У атома водорода есть неспаренный электрон, у атома кислорода два неспаренных электрона.
в. У атома водорода есть неспаренный электрон, у атома кислорода два неспаренных электрона.
г. Угол в 104° позволяет предположить наличие sp 3 -гибридизации.
д. Две sp 3 -гибридные орбитали располагаются под углом примерно 109°, молекула H 2 O по форме близка к тетраэдру, уменьшение валентного угла объясняется влиянием электронной не связывающей пары.
е. Электроотицательности χ Н =2,1, χ О =3,5, следовательно связь ковалентная полярная, электронная плотность смещена к атому кислорода, на нем появляется небольшой отрицательный заряд 2δ– На атоме водорода δ+. Так как центры тяжести положительного и отрицательного заряда не совпадают (она не симметрична), молекула является диполем.

Аналогичные рассуждения позволяют объяснить валентные углы в молекуле аммиака NH 3 . Гибридизацию с участием неподеленных электронных пар, обычно предполагают только для орбиталей атомов элементов II периода. Валентные углы в молекулах H 2 S = 92°, H 2 Se = 91°, H 2 Te = 89°. То же самое наблюдается в ряду NH 3 , РH 3 , AsH 3 . При описании геометрии этих молекул, традиционно, или не прибегают к представлениям о гибридизации, или объясняют уменьшение тетраэдрического угла возрастающим влиянием неподеленной пары.

В 1930 г. Слейтером и Л. Полингом была развита теория образования ковалентной связи за счет перекрывания электронных орбиталей – метод валентных связей. В основе этого метода лежит метод гибридизации, который описывает образование молекул веществ за счет «смешивания» гибридных орбиталей («смешиваются» не электроны, а орбитали).

ОПРЕДЕЛЕНИЕ

Гибридизация – смешение орбиталей и выравнивание их по форме и энергии. Так, при смешении s- и p- орбиталей получаем тип гибридизации sp, s- и 2-х p-орбиталей – sp 2 , s- и 3-х p-орбиталей – sp 3 . Существуют и другие типы гибридизации, например, sp 3 d, sp 3 d 2 и более сложные.

Определение типа гибридизации молекул с ковалентной связью

Определить тип гибридизации можно только для молекул с ковалентной связью типа АВ n , где n больше или равно двум, А – центральный атом, В – лиганд. В гибридизацию вступают только валентные орбитали центрального атома.

Определим тип гибридизации на примере молекулы BeH 2 .

Первоначально записываем электронные конфигурации центрального атома и лиганда, рисуем электронно-графические формулы.

Атом бериллия (центральный атом) имеет вакантные 2p-орбитали, поэтому, чтобы принять по одному электрону от каждого атома водорода (лиганд) для образования молекулы BeH 2 ему необходимо перейти в возбужденное состояние:

Образование молекулы BeH 2 происходит за счет перекрывания валентных орбиталей атома Be

* красным цветом обозначены электроны водорода, черным – бериллия.

Тип гибридизации определяют по тому, какие орбитали перекрылись, т.о., молекула BeH 2 находитс в sp – гибридизации.

Помимо молекул состава AB n , методом валентных связей можно определить тип гибридизации молекул с кратными связями. Рассмотрим на примере молекулы этилена C 2 H 4 . В молекуле этилена кратная двойная связь, которая образована и –связями. Чтобы определить гибридизацию, записываем электронные конфигурации и рисуем электронно-графические формулы атомов, входящих в состав молекулы:

6 C 2s 2 2s 2 2p 2

У атома углерода имеется еще одна вакантная p-орбиталь, следовательно, чтобы принять 4 атома водорода ему необходимо перейти в возбужденное состояние:

Одна p-орбиталь необходима для образования -связи (выделена красным цветом), поскольку -связь образуется за счет перекрывания «чистых» (негибридных) p — орбиталей. Остальные валентные орбитали идут в гибридизацию. Таким образом этилен находится в гибридизации sp 2 .

Определение геометрической структуры молекул

Геометрическую структуру молекул, а также катионов и анионов состава АВ n можно с помощью метода Гиллеспи. В основе этого метода – валентные пары электронов. На геометрическую структуру оказывают влияние не только электроны, участвующие в образовании химической связи, но и неподеленные электронные пары. Каждую неподеленную пару электронов в методе Гиллеспи обозначают Е, центральный атом – А, лиганд – В.

Если неподеленных электронных пар нет, то состав молекул может быть АВ 2 (линейная структура молекулы), АВ 3 (структура плоского треугольника), АВ4 (тетраэдрическая структура), АВ 5 (структура тригональной бипирамиды) и АВ 6 (октаэдрическая структура). От базисных структур могут быть получены производные, если вместо лиганда появляется неподеленная электронная пара. Например: АВ 3 Е (пирамидальная структура), АВ 2 Е 2 (угловая структура молекулы).

Чтобы определить геометрическую структуру (строение) молекулы необходимо определить состав частицы, для чего вычисляют количество неподеленных лектронных пар (НЕП):

НЕП = (общее число валентных электронов – число электронов, пошедших на образование связи с лигандами) / 2

На связь с H, Cl, Br, I, F уходит по 1-му электрону от А, на связь с O – по 2 электрона, а на связь с N – по 3 электрона от центрального атома.

Рассмотрим на примере молекулы BCl 3 . Центральный атом – B.

5 B 1s 2 2s 2 2p 1

НЕП = (3-3)/2 = 0, следовательно неподеленных электронных пар нет и молекула имеет структуру АВ 3 – плоский треугольник.

Подробно геометрическое строение молекул разного состава представлено в табл. 1.

Таблица 1. Пространственное строение молекул

Формула молекулы

Тип гибридизации

Тип молекулы

Геометрия молекулы

линейная

треугольная

тетраэдр

тригональная пирамида

тригональная бипирамида

дисфеноид

Т-образная

линейная

квадратная пирамида

Примеры решения задач

ПРИМЕР 1

Задание Определите с помощью метода валентных связей тип гибридизации молекулы метана (CH 4) и его геометрическую структуру по методу Гиллеспи
Решение 6 С 2s 2 2s 2 2p 2

Общая и БИОорганическая химия

(конспект лекций)

Часть 2. Органическая химия

Для студентов 1 курса медицинского факультета специальности «Стоматология»

Издательство Российского университета дружбы народов,


У т в е р ж д е н о

РИС Ученого совета

Российского университета дружбы народов

Ковальчукова О.В., Авраменко О.В.

Общая и биоорганическая химия (конспект лекций). Часть 2. Органическая химия. Для студентов 1 курса медицинского факультета специальности «Стоматология». М.: Изд-во РУДН, 2010. 108 с.

Конспект лекций, читаемых для студентов 1 курса медицинского факультета специальности «Стоматология». Составлено в соответствии с программой курса "Общая и биоорганическая химия".

Подготовлено на кафедре общей химии.

© Ковальчукова О.В., Авраменко О.В.

© Издательство Российского университета дружбы народов, 2010


ВВЕДЕНИЕ

Биоорганическая химия – раздел химии, который тесно связан с такими специальными дисциплинами медицинских факультетов вузов, как биохимия, фармакология, физиология, молекулярная биология. Она является областью науки, изучающей строение и механизмы функционирования биологически активных молекул с позиций и представлений органической химии, определяющей закономерности во взаимосвязи строения и реакционной способности органических соединений.

Основное внимание в настоящем курсе лекций уделено классифицированию органических соединений по строению углеродного скелета и природе функциональных групп, закономерностям, связывающим химические строение органических молекул с характером их реакционных центров, связи их электронного и пространственного строения с механизмами химических превращений.

ТЕОРИЯ ХИМИЧЕСКОГО СТРОЕНИЯ ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

Органические соединения – это соединения углерода (кроме наиболее простых), в которых он проявляет валентность IV.

Органическая химия – это химия углеводородов и их производных.

Атом углерода в органических соединениях находится в возбужденном состоянии и имеет четыре неспаренных электрона:

6 С 1s 2 2s 2 2p 2 → 6 С* 1s 2 2s 1 2p 3

Атом углерода в возбужденном состоянии способен:

1) образовывать прочные связи с другими атомами углерода, что приводит к формированию цепей и циклов;

2) вследствие различного типа гибридизации орбиталей формировать простые, двойные и тройные связи между атомами углерода и с другими атомами (H, O, N, S, P и др.);

3) соединяться с четырьмя различными атомами, что приводит к образованию разветвленных углеродных цепочек.

Типы гибридизации атома углерода в органических соединениях

sp 3 – гибридизация

Все четыре валентные орбитали участвуют в гибридизации. Валентный угол 109 о 28’ (тетраэдр). Атомы углерода образуют только простые (σ) связи – соединение насыщенное.

sp 2 – гибридизация

Образуются три гибридные и одна негибридная орбиталь. Валентный угол 120 о (плоские структуры, правильный треугольник). Гибридные орбитали образуют σ–связи. Негибридные орбитали образуют p-связи. sp 2 –Гибридизация характерна для непредельных соединений с одной p - связью.

sp – гибридизация

Образуются две гибридные и две негибридные орбитали. Валентный угол 180 о (линейные структуры). Атом углерода в состоянии sp -гибридизации принимает участие в образовании двух двойных связей или одной тройной связи.

Теория строения органических соединений сформулирована в 1861 г А.М. Бутлеровым и включает следующие положения:

1. Все атомы, входящие в состав молекулы, связаны между собой в строго определенной последовательности в соответствии с их валентностями. Порядок соединения атомов в молекулу обусловливает ее химическое строение .

2. Свойства органических соединений зависят не только от качественного и количественного состава веществ, но и от порядка их соединения (химического строения молекулы).

3. Атомы в молекуле оказывают взаимное влияние друг на друга, т.е. свойства групп атомов в молекуле могут изменяться в зависимости от природы других атомов, входящих в состав молекулы. Группа атомов, определяющая химические свойства органических молекул, носит название функциональная группа .

4. Каждое органическое соединение имеет лишь одну химическую формулу. Зная химическую формулу, можно предсказать свойства соединения, а изучая на практике его свойства, установить химическую формулу.

Органическая молекула

Типы углеродного скелета :

Ациклический:

· разветвленный;

· нормальный (линейный).

Циклический:

· карбоциклический (цикл только из атомов углерода);

· гетероциклический (кроме атомов углерода в цикл входят некоторые другие атомы – азота, кислорода, серы).

Типы атомов углерода в углеводородной цепи:

Н 3 С-СН 2 -СН-С- СН 3

Первичные атомы углерода (соединены в цепи только с одним атомом углерода, является концевым);

Вторичный атом углерода (соединен с двумя соседними атомами углерода, находится в середине цепи);

Третичный атом углерода (находится на разветвлении углеродной цепи, соединен с тремя атомами углерода);

Четвертичный атом углерода (не имеет других заместителей, кроме атомов углерода).

Функциональная группа особая группа атомов, которая определяет химические свойства соединений.

Примеры функциональных групп:

-ОН –гидроксильная группа (спирты, фенолы);

С=О – карбонильная группа (кетоны, альдегиды);

С - карбоксильнаягруппа (карбоновые кислоты);

-NH 2 – аминогруппа (амины);

-SH – тиольная группа (тиоспирты)

органическое соединение

состав свойства химическое строение

Атомы, входящие в состав органического соединения, могут по-разному соединяться в молекулы. Например, соединению состава С 2 Н 6 О может отвечать два химических соединения, имеющих разные физические и химические свойства:

Состав органического соединения – число атомов различных элементов входящих в его молекулу. Изомеры – соединения, имеющие одинаковый состав, но разное химическое строение. Изомеры обладают различными химическими свойствами.

Типы изомерии

СТРУКТУРНАЯ ИЗОМЕРИЯ

Изомерия углеродной цепи:

Изомерия положения кратных связей:

Межклассовая изомерия:

СТЕРЕОИЗОМЕРИЯ

Геометрическая (пространственная, цис-транс -изомерия соединений с двойными связями):

цис -бутен-2 транс -бутен-2

Геометрическая изомерия возможна в том случае, если каждый из атомов углерода, участвующий в образовании двойной связи, имеет разные заместители. Так, для бутена-1 СН 2 =СН–СН 2 –СН 3 геометрическая изомерия невозможна, так как один из атомов углерода при двойной связи имеет два одинаковых заместителя (атомы водорода).

Геометрическая (пространственная, цис-транс -изомерия циклических предельных соединений):

Геометрическая изомерия возможна в том случае, если хотя бы два атома углерода, образующих цикл, имеют разные заместители.

Оптическая :

Оптическая изомерия – вид стереоизомерии, обусловленный хиральностью молекул. В природе имеются соединения, которые соотносятся как две руки одного человека. Одним из свойств этих соединений является их несовместимость со своим зеркальным отражением. Это свойство называется хиральностью (от греч. « сheir» – рука).

Оптическая активность молекул обнаруживается при действии на них поляризованного света. Если через раствор оптически активного вещества пропустить поляризованный луч света, то произойдет вращение плоскости его поляризации. Оптические изомеры обозначают, используя префиксы d-