Электромагнитное загрязнение. Основные источники электромагнитного поля

Электромагнитное загрязнение. Основные источники электромагнитного поля

К неионизирующим электромагнитным полям (ЭМП) и излучениям (ЭМИ) относятся: электростатические поля, постоянные магнитные поля (в т.ч. и геомагнитное поле земли), электрические и магнитные поля промышлен- ной частоты, электромагнитные излучения радиочастотного диапазона , элек- тромагнитные излучения оптического диапазона . К оптической области неио- низирующих излучений принято относить электромагнитные колебания с дли- ной волны от 10 до 34·104 нм. Из них диапазон длин волн от 10 до 380 нм относят к области ультрафиолетового (УФ) излучения, от 380 до 770 нм - к видимой области спектра и от 770 до 34·104 нм - к области инфракрасного (ИК) излучения. Глаз человека имеет наибольшую чувствительность к излуче- ниям с длиной волн 540…550 нм. Особый вид ЭМИ представляет собой лазер- ное излучение (ЛИ) оптического диапазона с длиной волны 102...106 нм. Отли- чие ЛИ от других видов ЭМИ заключается в том, что источник излучения ис- пускает электромагнитные волны строго одной длины волны и в одной фазе.

Электромагнитные поля и излучения являются источником негативного влияния на человека и окружающую среду. Они загрязняют не только произ-


Водственные среды, но и окружающую среду. Сейчас ученые и практикующие экологи называют электромагнитные загрязнения вялотекущей чрезвычайной ситуацией.

Магнитные поля (МП) могут быть постоянными, импульсными и перемен-

ными. Степень воздействия магнитного поля на работающих зависит от макси- мальной напряженности его в рабочей зоне. При действии переменных МП на- блюдаются характерные зрительные ощущения, которые исчезают в момент прекращения воздействия.

Проблема электромагнитного загрязнения возникла в результате резкого

увеличения в последние годы количества различных источников ЭМП техно- генного характера и повлекла за собой необходимость досконального изучения физических основ данного негативного фактора, а также выработки мероприя- тий по защите населения и окружающей среды в условиях действия электро- магнитного загрязнения, превышающего допустимые уровни.

Под электромагнитным загрязнением среды понимается состояние элек-

тромагнитной обстановки, характеризуемое наличием в атмосфере электромаг- нитных полей повышенной интенсивности, создаваемых техногенными и при- родными источниками излучения неионизирующей части электромагнитного спектра.


Под электромагнитным излучением (ЭМИ) понимается процесс образова- ния электромагнитного поля.

Электромагнитное поле (ЭМП) представляет собой особую форму мате-

рии, состоящую из взаимосвязанных электрического и магнитного полей.

Электрическое поле представляет собой систему из замкнутых силовых ли- ний, создаваемых заряженными электрическими телами различных знаков или переменным магнитным полем. Постоянное электрическое поле создается не- подвижными электрическими зарядами.

Магнитное поле представляет собой систему из замкнутых силовых линий,

создаваемых при движении по проводнику электрических зарядов. Постоян- ное магнитное поле создается равномерно движущимися в проводнике элек- трическими зарядами постоянного тока.

Физические причины существования переменного электромагнитного поля

связаны с тем, что изменяющиеся во времени электрическое поле порождаеют магнитное поле, а изменения магнитного поля - вихревое электрическое по- ле. Напряженности этих полей, расположенные перпендикулярно друг другу, непрерывно изменяясь, возбуждают друг друга. ЭМП неподвижных или рав- номерно движущихся зарядов неразрывно связаны с ними. При ускорении движения зарядов часть ЭМП отрывается от них и присутствует независимо в форме электромагнитных волн, не исчезая с устранением источника их образо-


Вания. Критерием интенсивности электрического поля является его напря- женность E с единицей измерения В/м. Критериями интенсивности магнитного поля является его напряженность Н с единицей измерения А/м. Основными параметрами источника ЭМП являются частота электромагнитного колеба- ния, измеряемая в герцах (Гц), и длина волны, измеряемая в метрах (м).

Техногенные источники электромагнитного поля производственной среды

(технологические источники) по частотам излучения подразделяются на две группы.

К первой группе относятся источники, генерирующие излучения в диапазо-

не от 0 Гц до 3 кГц. Этот диапазон условно называют промышленные частоты . Источники: системы производства, передачи и распределения электроэнергии (электростанции, трансформаторные подстанции, системы и линии электропе- редач); офисная и домашняя электро- и электронная техника; электросети ад- министративных зданий и сооружений. На объектах железнодорожного транс- порта это системы электроснабжения электрифицированных железнодорожных линий, силовые трансформаторные подстанции, транспорт на электроприводе, системы и линии электропередач депо, грузовых районов, пунктов обработки вагонов и ремонтных производств, электросети административных зданий. К примеру, электротранспорт является мощным источником магнитного поля в


диапазоне частот от 0 до 1000 Гц. Среднее значение магнитной составляющей

ЭМП электропоездов может достигать 200 мкТл (ПДУ = 0,2 мкТл).

Мощными источниками излучения электромагнитной энергии являются провода высоковольтных линий электропередач (ЛЭП) промышленной часто- ты 50 Гц. Напряженность ЭМП, создаваемого ЛЭП, зависит от величины на- пряжения (в России - от 330 до 1150 кВ), нагрузки, высоты подвески прово- дов, расстояния между проводами ЛЭП. Напряженность ЭМП непосредствен- но над проводами и в определенной зоне вдоль трассы ЛЭП может значительно превышать ПДУ электромагнитной безопасности населения, особенно по маг- нитной составляющей. Негативное влияние электрических сетей в производст- венных и административных зданиях обусловлено тем, что человек постоянно находится в помещении вблизи электропроводки, в том числе проложенной не- экранированно. Кроме этого, наличие в зданиях железосодержащих конструк- ций и коммуникаций создает эффект «экранированного помещения», что уси- ливает электромагнитный эффект при расположении в них большого количест- ва различных источников излучения, в том числе и сетей электропроводки.

Ко второй группе технологических источников относятся источники, гене- рирующие излучения в диапазоне от 3 кГц до 300 ГГц. Излучения этого диапа- зона условно называют радиочастотами.

Источниками излучения радиочастотного диапазона являются:


офисная электро- и электронная техника;

теле- и радиопередающие центры;

системы получения информации, сотовая и спутниковая связь, релейные

навигационные системы;

радиолокационные станции (РЛС) различного вида и назначения;

оборудование, использующее сверхвысокочастотное излучение (видео-

дисплейные терминалы, СВЧ-печи, медицинские диагностические уста-

РЛС, используемые для управления движением воздушного транспорта и имеющие остронаправленные антенны кругового обзора, работают круглосу- точно и создают ЭМП высокой интенсивности. Системы сотовой связи по- строены на принципе деления территории на зоны (соты) радиусом 0,5…2 км, в центре которых располагаются базовые станции (БС), обслуживающие мо- бильные средства связи. Антенны БС создают опасные уровни напряженности в радиусе 50 м.

На объектах железнодорожного транспорта широко используются мнемо- схемы (у диспетчеров), видеодисплейные терминалы (ВДТ) и персональные ЭВМ (в кассах продажи железнодорожных билетов, в диспетчерских пунктах, в бухгалтериях и др.).


ВДТ на основе электронно-лучевых трубок являются источниками ЭМИ весьма широкого диапазона частот: низкочастотное, средних частот, высоко- частотное излучение, рентгеновское, ультрафиолетовое, видимое, инфракрас- ное (достаточно высокой интенсивности). Зона превышения ПДУ может дос- тигать 2,5 м. Зоны превышения ПДУ вблизи установок закалки рельсов тока- ми высокой частоты (ТВЧ), индукционной сушки, электроламповых генераторов также оказываются более 3 м. Зона влияния электрического по- ля - пространство, в котором напряженность электрического поля превышает

5 кВ/м. Зона влияния магнитного поля - пространство, в котором напряжен- ность магнитного поля превышает 80 А/м.

Особую группу составляют источники ЭМИ военного характера, специаль-

но генерирующие ЭМП для вывода из строя объектов инфраструктуры и для нанесения поражения населению. К ним относятся: радиочастотное электро- магнитное оружие различных видов, лазерное оружие и др.

Не исключено воздействие ЭМИ на объекты и при террористических актах.

К объектам, которые могут подвергаться воздействию специально генерируе- мого мощного ЭМП могут относиться объекты так называемых «критических инфраструктур», от нормального функционирования которых зависит, в ос- новном, национальная безопасность и жизнедеятельность государства: прави- тельственная связь, телекоммуникации, системы энергоснабжения, водоснаб-


Жения, системы управления, транспортные системы, системы противоракетной обороны (ПРО), стратегические средства и т.д. Большинство объектов этих систем хранят и передают информацию с использованием электромагнитных полей. При воздействии электромагнитного потока высокой интенсивности на технологические элементы этих объектов может произойти уничтожение всей информации на данном объекте либо нарушение системы связи между этими объектами. И в том и в другом случае отдельные объекты и определенные

«критические инфраструктуры» нормально функционировать не будут.

Кроме этого, ЭМП высокой интенсивности могут вызывать расплавление металла различных технологических линий, что приведет, в свою очередь, к структурным изменениям в технологических устройствах и системах объектов.

Введение

Тема реферата «Защита человека от вредного воздействия электромагнитного поля промышленной частоты» по дисциплине «Основы безопасности жизнедеятельности».

В настоящее время в быту и на производстве широко используются приборы и электроустановки различного назначения, распространяющие электромагнитные поля. Среди различных физических факторов окружающей среды, которые могут оказывать неблагоприятные воздействия на человека, большую опасность представляет электромагнитное поле (ЭМП) промышленной частоты 50 Гц.

Источники электромагнитных полей

Органы чувств человека не воспринимают электромагнитные поля. Человек не может контролировать уровень излучения и оценить грозящую опасность, своего рода электромагнитного смога. Электромагнитное излучение распространяется во всех направлениях и оказывает, прежде всего, воздействие на человека, работающего с прибором-излучателем, и на окружающую среду (в том числе и на другие живые организмы). Известно, что магнитное поле возникает вокруг любого предмета, работающего от электрического тока. Элементарным источником ЭМП является обычный проводник, по которому проходит переменный ток любой частоты, т.е. практически любой электроприбор, применяемый человеком в быту, является источником ЭМП.

Электрические сети, опутывающие стены наших квартир, хорошо можно увидеть в период их монтажа, еще до оштукатуривания стен. Это, прежде всего, разводка сетей ко всем розеткам и выключателям, а также кабели и различного вида удлинители электробытовых приборов. Добавьте сюда еще и кабели, питающие жилые дома от городских трансформаторных подстанций, разводку электросетей по этажам дома к электросчетчикам и средствам автоматической защиты каждой квартире, систему электропитания лифтов и освещения коридоров, подъездов домов и т.д.

В повседневной деятельности в условиях территории, занятой жилой и общественной застройкой, улицами, площадями общего пользования, человек также подвергается действию ЭМП промышленной частоты от разных источников.

Через жилые районы городов проложены воздушные линии электропередачи (ЛЭП). Воздушные ЛЭП глубокого ввода напряжением 10, 35 и 110 кВ, проходящие через жилую застройку, затрагивают небольшую часть жителей городов и населенных пунктов, но вызывают обоснованные жалобы с их стороны даже при отсутствии превышения предельно допустимых уровней (ПДУ) электромагнитного поля. Среди других источников электромагнитных полей промышленной частоты достаточно широко распространены открытые распределительные устройства трансформаторных подстанций, городской электротранспорт (контактные сети троллейбусов и трамваев) и железнодорожный электротранспорт, как правило, или приближенный к жилым корпусам, или перерезающий населенные пункты (села, города и пр.). Конечно, стены домов, особенно из железобетонных панелей, являются экранами и, тем самым, снижают уровень ЭМП, однако не учитывать воздействие внешних ЭМП на человека нельзя. В табл.1 приведены средние уровни электромагнитного поля на открытой территории и внутри жилых помещений, полученные для г. Оренбурга, который практически представляет собой среднестатистический промышленный район СНГ.

Помимо внутренних и внешних электросетей не следует забывать еще и внутренние и локальные источники ЭМП, максимально приближенные к человеку. К ним можно отнести физиотерапевтическую аппаратуру больниц, бытовые электропотребляемые радио- и электроприборы, питаемые от электросетей с промышленной частотой 50 Гц.

Замеры напряженности магнитных полей, создаваемых бытовыми электроприборами, показали, что их кратковременное воздействие оказывается даже более сильным, чем долговременное пребывание человека рядом с линиями электропередачи. Уровень напряженности магнитного поля на различных расстояниях от бытовых приборов до человека, мГс, приведен в табл. 2.

Источники электромагнитных полей (ЭМП) чрезвычайно разнообразны - это системы передачи и распределения электроэнергии (линии электропередачи - ЛЭП, трансформаторные и распределительные подстанции) и приборы, потребляющие электроэнергию (электродвигатели, электроплиты, электронагреватели, холодильники, телевизоры, видеодисплейные терминалы и др.).

К источникам, генерирующим и транслирующим электромагнитную энергию, относятся радио- и телевизионные вещательные станции, радиолокационные установки и системы радиосвязи, самые разнообразные технологические установки в промышленности, медицинские приборы и аппаратура (аппараты для диатермии и индуктотермии, УВЧ-терапии, приборы для микроволновой терапии и др.).

Работающий контингент и население может подвергаться воздействию изолированной электрической или магнитной составляющих поля или их сочетанию. В зависимости от отношения облучаемого лица к источнику облучения, принято различать несколько видов облучения - профессиональное, непрофессиональное, облучение в быту и облучение, осуществляемое в лечебных целях. Профессиональное облучение характеризуется многообразием режимов генерации и вариантов воздействия электромагнитных полей (облучение в ближней зоне, в зоне индукции, общее и местное, сочетающееся с действием других неблагоприятных факторов производственной среды). В условиях непрофессионального облучения наиболее типичным является общее облучение, в большинстве случаев в волновой зоне.

Электромагнитные поля, генерируемые теми или иными источниками, могут воздействовать на все тело работающего человека (общее облучение) или отдельной части тела (местное облучение). При этом, облучение может носить характер изолированного (от одного источника ЭМП), сочетанного (от двух и более источников ЭМП одного частотного диапазона), смешанного (от двух и более источников ЭМП различных частотных диапазонов), а также комбинированного (в условиях одновременного воздействия ЭМП и других неблагоприятных физических факторов производственной среды) воздействия.

Электромагнитная волна - это колебательный процесс, связанный с изменяющимися в пространстве и во времени взаимосвязанными электрическими и магнитными полями.

Электромагнитное поле - это область распространения электромагнитных

Характеристика электромагнитных волн. Электромагнитное поле характеризуется частотой излучения f, измеряемой в герцах, или длиной волны X, измеряемой в метрах. Электромагнитная волна распространяется в вакууме со скоростью света (3 108 м/с), и связь между длиной и частотой электромагнитной волны определяется зависимостью

где с - скорость света.

Скорость распространения волн в воздухе близка к скорости их распространения в вакууме.

Электромагнитное поле обладает энергией, а электромагнитная волна, распространяясь в пространстве, переносит эту энергию. Электромагнитное поле имеет электрическую и магнитную составляющие (Таблица № 35).

Напряженность электрического поля Е - это характеристика электрической составляющей ЭМП, единицей измерения которой является В/м.

Напряженность магнитного поля Н (А/м) - это характеристика магнитной составляющей ЭМП.

Плотность потока энергии (ППЭ) - это энергия электромагнитной волны, переносимой электромагнитной волной в единицу времени через единичную площадь. Единицей измерения ППЭ является Вт/м.

Таблица № 35. Единицы измерения интенсивности ЭМП в Международной системе единиц (СИ)
Диапазон Название величины Обозначение единиц
Постоянное магнитное поле Магнитная индукция Напряженность поля Ампер на метр, А/м Тесла, Тл
Постоянное электрическое (электростатическое) поле Напряженность поля Потенциал Электрический заряд Вольт на метр, В/м Кулон, Кл Ампер на метр, А/м
Электромагнитное поле до 300 МГц Напряженность магнитного поля Напряженность электрического поля Ампер на метр, А/м Вольт на метр, В/м
Электромагнитное поле до 0,3-300 ГГц Плотность потока энергии Ватт на квадратный метр, Вт/м2


Для отдельных диапазонов электромагнитных излучений - ЭМИ (световой диапазон, лазерное излучение) введены другие характеристики.

Классификация электромагнитных полей. Частотный диапазон и длина электромагнитной волны позволяют классифицировать электромагнитное поле на видимый свет (световые волны), инфракрасное (тепловое) и ультрафиолетовое излучение, физическую основу которых составляют электромагнитные волны. Эти виды коротковолнового излучения оказывают на человека специфическое воздействие.

Физическую основу ионизирующего излучения также составляют электромагнитные волны очень высоких частот, обладающие высокой энергией, достаточной для того, чтобы ионизировать молекулы вещества в котором распространяется волна (Таблица № 36).

Радиочастотный диапазон электромагнитного спектра делится на четыре частотных диапазона: низкие частоты (НЧ) - менее 30 кГц, высокие частоты (ВЧ) - 30 кГц...30 МГц, ультравысокие частоты (УВЧ) - 30...300 МГц, сверхвысокие частоты (СВЧ) - 300 МГц.750 ГГц.

Особой разновидностью электромагнитных излучений (ЭМИ) является лазерное излучение (ЛИ), генерируемое в диапазоне длин волн 0,1...1000 мкм. Особенностью ЛИ является его монохроматичность (строго одна длина волны), когерентность (все источники излучения испускают волны в одной фазе), острая направленность луча (малое расхождение луча).

Условно к неионизирующим излучениям (полям) можно отнести электростатические поля (ЭСП) и магнитные поля (МП).

Электростатическое поле - это поле неподвижных электрических зарядов, осуществляющее взаимодействие между ними.

Статическое электричество - совокупность явлений, связанных с возникновением, сохранением и релаксацией свободного электрического заряда на поверхности или в объеме диэлектриков или на изолированных проводниках.

Магнитное поле может быть постоянным, импульсным, переменным.

В зависимости от источников образования электростатические поля могут существовать в виде собственно электростатического поля, образующегося в разного рода энергетических установках и при электротехнических процессах. В промышленности ЭСП широко используются для электрогазоочистки, электростатической сепарации руд и материалов, электростатического нанесения лакокрасочных и полимерных материалов. Изготовление, испытание,

транспортировка и хранение полупроводниковых приборов и интегральных схем, шлифовка и полировка футляров радиотелевизионных приемников,

технологические процессы, связанные с использование диэлектрических

материалов, а также помещения вычислительных центров, где сосредоточена множительная вычислительная техника характеризуются образованием

электростатических полей. Электростатические заряды и создаваемые ими электростатические поля могут возникать при движении диэлектрических жидкостей и некоторых сыпучих материалов по трубопроводам, переливании жидкостей-диэлектриков, скатывании пленки или бумаги в рулон.

Таблица № 36. Международная классификация электромагнитных волн

диапазона

Название диапазона по частот Метрическое подразделение длин волн Длина Сокращенное буквенное обозначение
1 3-30 Гц Декамегаметровые 100-10 мм Крайне низкие, КНЧ
2 30-300 Гц Мегаметровые 10-1 мм Сверхнизкие, СНЧ
3 0,3-3 кГц Г ектокилометровые 1000-100 км Инфранизкие, ИНЧ
4 от 3 до 30 кГц Мириаметровые 100-10 км Очень низкие, ОНЧ
5 от 30 до 300 кГц Километровые 10-1 км Низкие частоты, НЧ
6 от 300 до 3000 кГц Г ектометровые 1-0,1 км Средние, СЧ
7 от 3 до 30 МГц Декаметровые 100-10 м Высокие, ВЧ
8 от 30 до 300 МГц Метровые 10-1 м Очень высокие, ОВЧ
9 от 300 до 3000 МГц Дециметровые 1-0,1 м Ультравысокие, УВЧ
10 от 3 до 30 ГГц Сантиметровые 10-1 см Сверхвысокие, СВЧ
11 от 30 до 300 ГГц Миллиметровые 10-1 мм Крайне высокие, КВЧ
12 от 300 до 3000 ГГц Децимиллиметровые 1-0,1 мм Г ипервысокие, ГВЧ


Электромагниты, соленоиды, установки конденсаторного типа, литые и металлокерамические магниты сопровождаются возникновением магнитных полей.

В электромагнитных полях выделяют три зоны, которые формируются на различных расстояниях от источника электромагнитных излучений.

Зона индукции (ближняя зона) - охватывает промежуток от источника излучения до расстояния, равного примерно У2п ~ У6. В этой зоне электромагнитная волна еще не сформирована и поэтому электрическое и магнитное поля не взаимосвязаны и действуют независимо (первая зона).

Зона интерференции (промежуточная зона) - располагается на расстояниях примерно от У2п до 2лХ. В этой зоне происходит формирование ЭМВ и на человека действует электрическое и магнитное поля, а также оказывается энергетическое воздействие (вторая зона).

Волновая зона (дальня зона) - располагается на расстояниях свыше 2лХ. В этой зоне электромагнитная волна сформирована, электрическое и магнитное поля взаимосвязаны. На человека в этой зоне воздействует энергия волны (третья зона).

Действие электромагнитного поля на организм. Биологический и патофизиологический эффект воздействия электромагнитных полей на организм зависит от диапазона частот, интенсивности воздействующего фактора, продолжительности облучения, характера излучения и режима облучения. Действие ЭМП на организм зависит от закономерности распространения радиоволн в материальных средах, где поглощение энергии электромагнитной волны определяется частотой электромагнитных колебаний, электрических и магнитных свойств среды.

Как известно, ведущим показателем, характеризующим электрические свойства тканей организма, являются их диэлектрическая и магнитная проницаемость. В свою очередь, различия электрических свойств тканей (диэлектрической и магнитной проницаемости, удельного сопротивления) связаны с содержанием в них свободной и связанной воды. Все биологические ткани, по диэлектрической проницаемости, подразделяются на две группы: ткани с высоким содержанием воды - свыше 80% (кровь, мышцы, кожа, ткань мозга, ткань печени и селезенки) и ткани с относительно низким содержанием воды (жировая, костная). Коэффициент поглощения в тканях с высоким содержанием воды, при одинаковых значениях напряженности поля, в 60 раз выше, чем в тканях с низким содержанием воды. Поэтому глубина проникновения электромагнитных волн в ткани с низким содержанием воды в 10 раз больше, чем в ткани с ее высоким содержанием.

Тепловой и атермический эффект лежат в основе механизмов биологического действия электромагнитных волн. Тепловое действие ЭМП характеризуется избирательным нагревом отдельных органов и тканей, повышением общей температуры тела. Интенсивное облучение ЭМП может вызывать деструктивные изменения в тканях и органах, однако острые формы поражения встречаются крайне редко и их возникновение чаще всего связано с аварийными ситуациями при нарушении техники безопасности.

Хронические формы радиоволновых поражений, их симптомы и течение не имеют строго специфических проявлений. Тем не менее, для них характерно развитие астенических состояний и вегетативных расстройств, главным образом со

стороны сердечно-сосудистой системы. Наряду с общей астенизацией, сопровождающейся слабостью, повышенной утомляемостью, беспокойным сном, у больных появляются головная боль, головокружение, психоэмоциональная лабильность, боли в области сердца, повышенная потливость, снижение аппетита. Развиваются признаки акроцианоза, регионарный гипергидроз, похолодание кистей и стоп, тремор пальцев рук, лабильность пульса и артериального давления с наклонностью к брадикардии и гипотонии; дисфункция в системе гипофиз - кора надпочечников приводит к изменениям секреции гормонов щитовидной и половых желез.

Одним из немногих специфических поражений, вызываемых воздействием электромагнитных излучений радиочастотного диапазона, является развитие катаракты. Помимо катаракты, при воздействии электромагнитных волн высоких частот, могут развиваться кератиты и повреждения стромы роговицы.

Инфракрасное (тепловое) излучение, световое излучение при высоких энергиях, а также ультрафиолетовое излучение большого уровня, при остром воздействии, могут приводить к расширению капилляров, ожогам кожи и органов зрения. Хроническое облучение сопровождается изменением пигментации кожи, развитием хронического конъюнктивита и помутнением хрусталика глаза. Ультрафиолетовое излучение небольших уровней полезно и необходимо для человека, так как способствует усилению обменных процессов в организме и синтезу биологически активной формы витамина D.

Эффект воздействия лазерного излучение на человека зависит от интенсивности излучения, длины волны, характера излучения и времени воздействия. При этом выделяют локальное и общее повреждение тех или иных тканей организма человека. Органом-мишенью при этом служит глаз, который легко повреждается, нарушается прозрачность роговицы и хрусталика, возможно повреждение сетчатки глаза. Лазерное изучение, особенно инфракрасного диапазона, способно проникать через ткани на значительную глубину, поражая внутренние органы. Длительное воздействие лазерного излучения даже небольшой интенсивности может привести к различным функциональным нарушениям нервной, сердечно-сосудистой систем, желез внутренней секреции, артериального давления, повышению утомляемости, снижению работоспособности.

Гигиеническое нормирование электромагнитных полей. Согласно нормативным документам: СанПиН «Санитарно-эпидемиологические требования к эксплуатации радиоэлектронных средств с условиями работы с источниками электромагнитного излучения» № 225 от 10.04.2007 г. МЗ РК; СанПиН «Санитарные правила и нормы защиты населения от воздействия электромагнитных полей, создаваемых радиотехническими объектами» № 3.01.002-96 МЗ РК; МУ

«Методические указания по осуществлению государственного санитарного надзора за объектами с источниками электромагнитных полей (ЭМП) неионизирующей части спектра» № 1.02.018/у-94 МЗ РК; МУ «Методические рекомендации по проведению лабораторного контроля за источниками электромагнитных полей неионизирующей части спектра (ЭМП) при осуществлении государственного санитарного надзора» № 1.02.019/р-94 МЗ РК регламентируется интенсивность электромагнитных полей радиочастот на рабочих местах персонала,
осуществляющего работы с источниками ЭМП и требования к проведению контроля, а также регламентируется облучение электрическим полем, как по величине напряженности, так и продолжительности действия.

Частотный диапазон радиочастот электромагнитных полей (60 кГц - 300 МГц) оценивается напряженностью электрической и магнитной составляющих поля; в диапазоне частот 300 МГц - 300 ГГц - поверхностной плотностью потока энергии излучения и создаваемой им энергетической нагрузкой (ЭН). Суммарный поток энергии, проходящий через единицу облучаемой поверхности за время действия (Т), и выражающийся произведением ППЭ Т представляет собой энергетическую нагрузку.


На рабочих местах персонала напряженность ЭМП в диапазоне частот 60 кГц - 300 МГц в течение рабочего дня не должна превышать установленных предельно допустимых уровней (ПДУ):

В случаях, когда время воздействия ЭМП на персонал не превышает 50% продолжительности рабочего времени, допускаются уровни выше указанных, но не более чем в 2 раза.

Нормирование и гигиеническая оценка постоянных магнитных полей (ПМП) в производственных помещениях и на рабочих местах (Таблица №37) осуществляется дифференцировано, в зависимости от времени воздействия на работника в течение рабочей смены и учетом условий общего или локального облучения.

Таблица № 37. ПДУ воздействия ПМП на работающих.


Достаточно широко используются также гигиенические нормативы ПМП (Таблица № 38), разработанные Международным комитетом по неионизирующим излучениям, которое функционирует при Международной ассоциации радиационной защиты.

Основные источники электромагнитного поля

Среди основных источников ЭМП можно перечислить:

Электротранспорт (трамваи, троллейбусы, поезда, …);

Линии электропередач (городского освещения, высоковольтные, …);

Электропроводка (внутри зданий, телекоммуникации, …);

Бытовые электроприборы;

Теле- и радиостанции (транслирующие антенны);

Спутниковая и сотовая связь (транслирующие антенны);

Персональные компьютеры.

Электротранспорт . Транспорт на электрической тяге – электропоезда, троллейбусы, трамваи и т.п. – является относительно мощным источником магнитного поля в диапазоне частот 0 ÷ 1000 Гц. Максимальные значения плотности потока магнитной индукции В в пригородных электричках достигают 75 мкТл при среднем значении 20 мкТл. Среднее значение В на транспорте с электроприводом постоянного тока зафиксировано на уровне 29 мкТл.

Линии электропередач (ЛЭП). Провода работающей ЛЭП создают в прилегающем пространстве электрическое и магнитное поля промышленной частоты. Расстояние, на которое распространяются эти поля от проводов линии, достигает десятков метров. Дальность распространения электрического поля зависит от класса напряжения ЛЭП (цифра, обозначающая класс напряжения стоит в названии ЛЭП – например ЛЭП 220 кВ), чем выше напряжение – тем больше зона повышенного уровня электрического поля, при этом размеры зоны не изменяются в течение времени работы ЛЭП. Дальность распространения магнитного поля зависит от величины протекающего тока или от нагрузки линии. Поскольку нагрузка ЛЭП может неоднократно изменяться как в течение суток, так и с изменением сезонов года, размеры зоны повышенного уровня магнитного поля также меняются.

Биологическое действие . Электрические и магнитные поля являются очень сильными факторами влияния на состояние всех биологических объектов, попадающих в зону их воздействия. Например, в районе действия электрического поля ЛЭП у насекомых проявляются изменения в поведении: так у пчел фиксируется повышенная агрессивность, беспокойство, снижение работоспособности и продуктивности, склонность к потере маток; у жуков, комаров, бабочек и других летающих насекомых наблюдается изменение поведенческих реакций, в том числе изменение направления движения в сторону с меньшим уровнем поля. У растений распространены аномалии развития – меняются формы и размеры цветков, листьев, стеблей, появляются лишние лепестки. Здоровый человек страдает от относительно длительного пребывания в поле ЛЭП. Кратковременное облучение (минуты) способно привести к негативной реакции только у гиперчувствительных людей или у больных некоторыми видами аллергии.

В последние годы в числе отдаленных последствий часто называются онкологические заболевания.

Санитарные нормы, несмотря на то, что магнитное поле во всем мире сейчас считается наиболее опасным для здоровья, предельно допустимая величина магнитного поля для населения не нормируется. Большая часть ЛЭП строилась без учета этой опасности. На основании массовых эпидемиологических обследований населения, проживающего в условиях облучения магнитными полями ЛЭП как безопасный или «нормальный» уровень для условий продолжительного облучения, не приводящий к онкологическим заболеваниям, независимо друг от друга шведскими и американскими специалистами рекомендована величина плотности потока магнитной индукции 0,2 ÷ 0,3 мкТл. Основной принцип защиты здоровья населения от электромагнитного поля ЛЭП состоит в установлении санитарно-защитных зон для линий электропередачи и снижением напряженности электрического поля в жилых зданиях и в местах возможного продолжительного пребывания людей путем применения защитных экранов, границы санитарно-защитных зон для ЛЭП которых на действующих линиях определяются по критерию напряженности электрического поля – 1 кВ/м (таблицы 1.2 ÷ 1.4).

Таблица 1.2. Границы санитарно-защитных зон для ЛЭП

Таблица 1.4. Предельно допустимые уровни воздействия электрического поля ЛЭП

Продолжение таблицы 1.4

К размещению высоковольтных линий (ВЛ) ультравысоких напряжений (750 и 1150 кВ) предъявляются дополнительные требования по условиям воздействия электрического поля на население. Так, ближайшее расстояние от оси проектируемых ВЛ 750 и 1150 кВ до границ населенных пунктов должно быть, как правило, не менее 250 и 300 м, соответственно. Как определить класс напряжения ЛЭП? Лучше всего обратиться в местное энергетическое предприятие, но можно попробовать визуально, хотя не специалисту это сложно: 330 кВ – два провода, 500 кВ – три провода, 750 кВ – четыре провода; ниже 330 кВ – по одному проводу на фазу, определить можно только приблизительно по числу изоляторов в гирлянде: 220 кВ – 10 ÷ 15 шт., 110 кВ – 6 ÷ 8 шт., 35 кВ – 3 ÷ 5 шт., 10 кВ и ниже – 1 шт.

Предельно допустимые уровни (ПДУ) . В пределах санитарно-защитной зоны ВЛ запрещается:

Размещать жилые и общественные здания и сооружения;

Устраивать площадки для стоянки и остановки всех видов транспорта;

Размещать предприятия по обслуживанию автомобилей и склады нефти и нефтепродуктов;



Производить операции с горючим, выполнять ремонт машин и механизмов.

Территории санитарно-защитных зон разрешается использовать как сельскохозяйственные угодья, однако рекомендуется выращивать на них культуры, не требующие ручного труда. В случае, если на каких-то участках напряженность электрического поля за пределами санитарно-защитной зоны окажется выше предельно допустимой 0,5 кВ/м внутри здания и выше 1 кВ/м на территории зоны жилой застройки (в местах возможного пребывания людей), должны быть приняты меры для снижения напряженности. Для этого на крыше здания с неметаллической кровлей размещается практически любая металлическая сетка, заземленная не менее чем в двух точках. В зданиях с металлической крышей достаточно заземлить кровлю не менее чем в двух точках. На приусадебных участках или других местах пребывания людей напряженность поля промышленной частоты может быть снижена путем установления защитных экранов, например это железобетонные, металлические заборы, тросовые экраны, деревья или кустарники высотой не менее двух метров.

Электропроводка. Наибольший вклад в электромагнитную обстановку жилых помещений в диапазоне промышленной частоты 50 Гц вносит электротехническое оборудование здания, а именно кабельные линии, подводящие электричество ко всем квартирам и другим потребителям системы жизнеобеспечения здания, а также распределительные щиты и трансформаторы. В помещениях, смежных с этими источниками, обычно повышен уровень магнитного поля промышленной частоты, вызываемый протекающим электротоком. Уровень электрического поля промышленной частоты при этом не высокий и не превышает ПДУ для населения 500 В/м.

В настоящее время многие специалисты считают предельно допустимой величину магнитной индукции равной 0,2 ÷ 0,3 мкТл. При этом считается, что развитие заболеваний – прежде всего лейкемии – очень вероятно при продолжительном облучении человека полями более высоких уровней (несколько часов в день, особенно в ночные часы, в течение периода более года).

Основная мера защиты – предупредительная:

Необходимо исключить продолжительное пребывание (регулярно по несколько часов в день) в местах повышенного уровня магнитного поля промышленной частоты;

Кровать для ночного отдыха максимально удалять от источников облучения, расстояние до распределительных шкафов, силовых электрокабелей должно быть 2,5 ÷ 3 метра;

Если в помещении или в смежном есть какие-то неизвестные кабели, распределительные шкафы, трансформаторные подстанции – удаление должно быть максимально возможным, оптимально – промерить уровень ЭМП до того, как жить в таком помещении;

При необходимости установить полы с электроподогревом выбирать системы с пониженным уровнем магнитного поля.

Бытовая электротехника . Все бытовые приборы, работающие с использованием электрического тока, являются источниками ЭМП. Наиболее мощными следует признать СВЧ-печи, аэрогрили, холодильники с системой «без инея», кухонные вытяжки, электроплиты, телевизоры. Реально создаваемое ЭМП в зависимости от конкретной модели и режима работы может сильно различаться среди оборудования одного типа. Значения магнитного поля тесно связаны с мощностью прибора – чем она выше, тем выше магнитное поле при его работе. Значения электрического поля промышленной частоты практически всех электробытовых приборов не превышают нескольких десятков В/м на расстоянии 0,5 м, что значительно меньше ПДУ 500 В/м. (таблица 1.5 ÷ 1.6).

При размещении в квартире бытовой техники руководствуйтесь следующими принципами: размещайте бытовые электроприборы по возможности дальше от мест отдыха, не располагайте бытовые электроприборы поблизости и не ставьте их друг на друга.

Микроволновая печь (или СВЧ-печь) в своей работе использует для разогрева пищи ЭМП, называемое также микроволновым излучением или СВЧ-излучением. Рабочая частота СВЧ-излучения микроволновых печей составляет 2,45 ГГц. Именно этого излучения и опасаются многие люди. Однако, современные микроволновые печи оборудованы достаточно совершенной защитой, которая не дает ЭМП вырываться за пределы рабочего объема. Однако, нельзя говорить, что поле совершенно не проникает вне микроволновой печи.

Таблица 1.5. Уровни магнитного поля промышленной частоты бытовых электроприборов на расстоянии 0,3 м

По разным причинам часть ЭМП, предназначенного для приготовления продукта, проникает наружу, особенно интенсивно, как правило, в районе правого нижнего угла дверцы. Для обеспечения безопасности при использовании печей в быту действуют санитарные нормы, ограничивающие предельную величину утечки СВЧ-излучения микроволновой печи. Называются они «Предельно допустимые уровни плотности потока энергии, создаваемой микроволновыми печами» и имеют обозначение СН № 2666-83. Согласно этим санитарным нормам, величина плотности потока энергии ЭМП не должна превышать 10 мкВт/см 2 на расстоянии 50 см от любой точки корпуса печи при нагреве одного литра воды. На практике практически все новые современные микроволновые печи выдерживают это требование с большим запасом. Тем не менее, при покупке новой печи надо убедиться, что в сертификате соответствия зафиксировано соответствие вашей печи требованиям этих санитарных норм. Надо помнить, что со временем степень защиты может снижаться, в основном из-за появления микрощелей в уплотнении дверцы. Это может происходить как из-за попадания грязи, так и из-за механических повреждений. Поэтому дверца и ее уплотнение требует аккуратности в обращении и тщательного ухода.

Срок гарантированной стойкости защиты от утечек ЭМП при нормальной эксплуатации – несколько лет.

Через пять – шесть лет эксплуатации целесообразно проверить качество защиты, для чего пригласить специалиста из специально аккредитованной лаборатории по контролю ЭМП. Кроме СВЧ-излучения работу микроволновой печи сопровождает интенсивное магнитное поле, создаваемое током промышленной частоты 50 Гц, протекающим в системе электропитания печи. При этом микроволновая печь является одним из наиболее мощных источников магнитного поля в квартире.

Таблица 1.6. Предельно допустимые уровни ЭМП для потребительской продукции, являющейся источником ЭМП

Источник Диапазон Значение ПДУ Условия измерения
Индукцион-ные печи 20 ÷ 22 кГц 500 В/м 4 А/м Расстояние 0,3 м от корпуса
СВЧ печи 2,45 ГГц 10 мкВт/см 2 Расстояние 0,50 ± 0,05 м от любой точки, при нагрузке 1 л воды
Видеодис-плейный терминал ПЭВМ 5 Гц ÷ 2 кГц Е ПДУ = 25 В/м В ПДУ = 250 нТл Расстояние 0,5 м вокруг монитора ПЭВМ
2 ÷ 400 кГц Е ПДУ = 2,5 В/мВ ПДУ = 25 нТл
поверхностный электростатиче- ский потенциал V = 500 В Расстояние 0,1 м от экрана монитора ПЭВМ
Прочая продукция 50 Гц Е = 500 В/м Расстояние 0,5 м от корпуса изделия
0,3 ÷ 300 кГц Е = 25 В/м
0,3 ÷ 3 МГц Е = 15 В/м
3 ÷ 30 МГц Е = 10 В/м
30 ÷ 300 МГц Е = 3 В/м
0,3 ÷ 30 ГГц ППЭ = 10 мкВт/см 2

Теле- и радиостанции. Передающие радиоцентры (ПРЦ) размещаются в специально отведенных для них зонах и могут занимать довольно большие территории (до 1000 га). По своей структуре они включают в себя одно или несколько технических зданий, где находятся радиопередатчики и антенные поля, на которых располагаются до нескольких десятков антенно-фидерных систем (АФС). АФС включает в себя антенну, служащую для измерения радиоволн, и фидерную линию, подводящую к ней высокочастотную энергию, генерируемую передатчиком. Зону возможного неблагоприятного действия ЭМП, создаваемых ПРЦ, можно условно разделить на две части. Первая часть зоны – это собственно территория ПРЦ, где размещены все службы, обеспечивающие работу радиопередатчиков и АФС. Это территория охраняется и на нее допускаются только лица, профессионально связанные с обслуживанием передатчиков, коммутаторов и АФС. Вторая часть зоны – это прилегающие к ПРЦ территории, доступ на которые не ограничен и где могут размещаться различные жилые постройки, в этом случае возникает угроза облучения населения, находящегося в этой части зоны. Расположение ПРЦ может быть различным, например, в Москве и московском регионе характерно размещение в непосредственной близости или среди жилой застройки. Высокие уровни ЭМП наблюдаются на территориях, а нередко и за пределами размещения передающих радиоцентров низкой, средней и высокой частоты (ПРЦ НЧ, СЧ и ВЧ). Детальный анализ электромагнитной обстановки на территориях ПРЦ свидетельствует о ее крайней сложности, связанной с индивидуальным характером интенсивности и распределения ЭМП для каждого радиоцентра. В связи с этим специальные исследования такого рода проводятся для каждого отдельного ПРЦ. Широко распространенными источниками ЭМП в населенных местах в настоящее время являются радиотехнические передающие центры (РТПЦ), излучающие в окружающую среду ультракороткие волны ОВЧ и УВЧ-диапазонов.

Сравнительный анализ санитарно-защитных зон (СЗЗ) и зон ограничения застройки в зоне действия таких объектов показал, что наибольшие уровни облучения людей и окружающей среды наблюдаются в районе размещения РТПЦ «старой постройки» с высотой антенной опоры не более 180 м. Наибольший вклад в суммарную интенсивность воздействия вносят «уголковые» трех- и шестиэтажные антенны ОВЧ ЧМ-вещания.

Радиостанции ДВ (частоты 30 ÷ 300 кГц). В этом диапазоне длина волн относительно большая (например, 2000 м для частоты 150 кГц). На расстоянии одной длины волны (и меньше) от антенны поле может быть достаточно большим, например, на расстоянии 30 м от антенны передатчика мощностью 500 кВт, работающего на частоте 145 кГц, электрическое поле может быть выше 630 В/м, а магнитное – выше 1,2 А/м.

Радиостанции СВ (частоты 300 кГц ÷ 3 МГц). Данные для радиостанций этого типа говорят, что напряженность электрического поля на расстоянии 200 м может достигать 10 В/м, на расстоянии 100 м – 25 В/м, на расстоянии 30 м – 275 В/м (приведены данные для передатчика мощностью 50 кВт).

Радиостанции КВ (частоты 3 ÷ 30 МГц). Передатчики радиостанций КВ имеют обычно меньшую мощность. Однако они чаще размещаются в городах, могут быть размещены даже на крышах жилых зданий на высоте 10 ÷ 100 м. Передатчик мощностью 100 кВт на расстоянии 100 м может создавать напряженность электрического поля 44 В/м и магнитного поля 0,12 Ф/м.

Телевизионные передатчики располагаются, как правило, в городах. Передающие антенны размещаются обычно на высоте выше 110 м. С точки зрения оценки влияния на здоровье интерес представляют уровни поля на расстоянии от нескольких десятков метров до нескольких километров. Типичные значения напряженности электрического поля могут достигать 15 В/м на расстоянии 1 км от передатчика мощностью 1 МВт. Проблема оценки уровня ЭМП телевизионных передатчиков актуальна в связи с резким ростом числа телевизионных каналов и передающих станций.

Основной принцип обеспечения безопасности – соблюдение установленных Санитарными нормами и правилами предельно допустимых уровней электромагнитного поля. Каждый радиопередающий объект имеет Санитарный паспорт, в котором определены границы санитарно-защитной зоны. Только при наличии этого документа территориальные органы Госсанэпиднадзора разрешают эксплуатировать радиопередающие объекты. Периодически они производят контроль электромагнитной обстановки на предмет ее соответствия установленным ПДУ.

Спутниковая связь. Системы спутниковой связи состоят из приемопередающей станции на Земле и спутника, находящегося на орбите. Диаграмма направленности антенны станций спутниковой связи имеет ярко выраженный узконаправленный основной луч – главный лепесток. Плотность потока энергии (ППЭ) в главном лепестке диаграммы направленности может достигать нескольких сотен Вт/м 2 вблизи антенны, создавая также значительные уровни поля на большом удалении.

Например, станция мощностью 225 кВт, работающая на частоте 2,38 ГГц, создает на расстоянии 100 км ППЭ равное 2,8 Вт/м 2 . Однако рассеяние энергии от основного луча очень небольшое и происходит больше всего в районе размещения антенны.

Сотовая связь. Сотовая радиотелефония является сегодня одной из наиболее интенсивно развивающихся телекоммуникационных систем. Основными элементами системы сотовой связи являются базовые станции (БС) и мобильные радиотелефоны (МРТ). Базовые станции поддерживают радиосвязь с мобильными радиотелефонами, вследствие чего БС и МРТ являются источниками электромагнитного излучения в УВЧ диапазоне. Важной особенностью системы сотовой радиосвязи является весьма эффективное использование выделяемого для работы системы радиочастотного спектра (многократное использование одних и тех же частот, применение различных методов доступа), что делает возможным обеспечение телефонной связью значительного числа абонентов. В работе системы применяется принцип деления некоторой территории на зоны, или «соты», радиусом обычно 0,5 ÷ 10 км. Базовые станции (БС) поддерживают связь с находящимися в их зоне действия мобильными радиотелефонами и работают в режиме приема и передачи сигнала. В зависимости от стандарта (таблица 17) БС излучают электромагнитную энергию в диапазоне частот 463 ÷ 1880 МГц. Антенны БС устанавливаются на высоте 15 ÷ 100 м от поверхности земли на уже существующих постройках (общественных, служебных, производственных и жилых зданиях, дымовых трубах промышленных предприятий и т.д.) или на специально сооруженных мачтах. Среди установленных в одном месте антенн БС имеются как передающие (или приемопередающие), так и приемные антенны, которые не являются источниками ЭМП. Исходя из технологических требований построения системы сотовой связи, диаграмма направленности антенн в вертикальной плоскости рассчитана таким образом, что основная энергия излучения (более 90 %) сосредоточена в довольно узком «луче». Он всегда направлен в сторону от сооружений, на которых находятся антенны БС, и выше прилегающих построек, что является необходимым условием для нормального функционирования системы.

БС являются видом передающих радиотехнических объектов, мощность излучения которых (загрузка) не является постоянной 24 часа в сутки. Загрузка определяется наличием владельцев сотовых телефонов в зоне обслуживания конкретной базовой станции и их желанием воспользоваться телефоном для разговора, что, в свою очередь, коренным образом зависит от времени суток, места расположения БС, дня недели и др. В ночные часы загрузка БС практически равна нулю, т.е. станции в основном «молчат».

Таблица 1.7. Краткие технические характеристики стандартов системы сотовой радиосвязи

Наименование стандарта Диапазон рабочих частот БС, МГц Диапазон рабочих частот МРТ, МГц Максимальная излучаемая мощность БС, Вт Максимальная излучаемая мощность
МРТ Радиус «соты» NMT-450. Аналоговый 463 ÷ 467,5 453 ÷ 457,5 1 Вт; 1 ÷ 40 м
AMPS. Аналоговый 869 ÷ 894 824 ÷ 849 0,6 Вт; 2 ÷ 20 км
D-AMPS (IS-136). Цифровой 869 ÷ 894 824 ÷ 849 0,2 Вт; 0,5 ÷ 20 км
CDMA. Цифровой 869 ÷ 894 824 ÷ 849 0,6 Вт; 2 ÷ 40 км
GSM-900. Цифровой 925 ÷ 965 890 ÷ 915 0,25 Вт; 0,5 ÷ 35 км
GSM-1800 (DCS). Цифровой 1805 ÷ 1880 1710 ÷ 1785 0,125 Вт; 0,5 ÷ 35 км

Мобильный радиотелефон (МРТ) представляет собой малогабаритный приемопередатчик. В зависимости от стандарта телефона, передача ведется в диапазоне частот 453 ÷ 1785 МГц. Мощность излучения МРТ является величиной переменной, в значительной степени зависящей от состояния канала связи «мобильный радиотелефон – базовая станция», т.е. чем выше уровень сигнала БС в месте приема, тем меньше мощность излучения МРТ. Максимальная мощность находится в границах 0,125 ÷ 1 Вт, однако в реальной обстановке она обычно не превышает 0,05 ÷ 0,2 Вт. Вопрос о воздействии излучения МРТ на организм пользователя до сих пор остается открытым. Многочисленные исследования, проведенные учеными разных стран на биологических объектах (в том числе, на добровольцах), привели к неоднозначным, иногда противоречащим, результатам. Неоспоримым остается тот факт, что организм человека «откликается» на наличие излучения сотового телефона.

При работе мобильного телефона электромагнитное излучение воспринимается не только приемником базовой станции, но и телом пользователя, и, в первую очередь, его головой. Что при этом происходит в организме человека, насколько это воздействие опасно для здоровья? Однозначного ответа на этот вопрос до сих пор не существует. Однако эксперимент ученых показал, что мозг человека не только ощущает излучение сотового телефона, но и различает стандарты сотовой связи.

Радиолокационные станции оснащены, как правило, антеннами зеркального типа и имеют узконаправленную диаграмму излучения в виде луча, направленного вдоль оптической оси. Радиолокационные системы работают на частотах от 500 МГц до 15 ГГц, однако отдельные системы могут работать на частотах до 100 ГГц. Создаваемый ими ЭМ-сигнал принципиально отличается от излучения иных источников. Связано это с тем, что периодическое перемещение антенны в пространстве приводит к пространственной прерывистости облучения. Временная прерывистость облучения обусловлена цикличностью работы радиолокатора на излучение. Время наработки в различных режимах работы радиотехнических средств может исчисляться от нескольких часов до суток. Так у метеорологических радиолокаторов с временной прерывистостью 30 мин – излучение, 30 мин – пауза суммарная наработка не превышает 12 ч, в то время как радиолокационные станции аэропортов в большинстве случаев работают круглосуточно. Ширина диаграммы направленности в горизонтальной плоскости обычно составляет несколько градусов, а длительность облучения за период обзора составляет десятки миллисекунд. Радары метрологические могут создавать на удалении 1 км ППЭ ~ 100 Вт/м 2 за каждый цикл облучения. Радиолокационные станции аэропортов создают ППЭ ~ 0,5 Вт/м 2 на расстоянии 60 м. Морское радиолокационное оборудование устанавливается на всех кораблях, обычно оно имеет мощность передатчика на порядок меньшую, чем у аэродромных радаров, поэтому в обычном режиме сканирование ППЭ, создаваемое на расстоянии нескольких метров, не превышает 10 Вт/м 2 . Возрастание мощности радиолокаторов различного назначения и использование остронаправленных антенн кругового обзора приводит к значительному увеличению интенсивности ЭМИ СВЧ-диапазона и создает на местности зоны большой протяженности с высокой плотностью потока энергии. Наиболее неблагоприятные условия - в жилых районах городов, в черте которых размещаются аэропорты.

Персональные компьютеры . Основным источником неблагоприятного воздействия на здоровье пользователя компьютера является средство визуального отображения информации на электронно-лучевой трубке. Ниже перечислены основные факторы его неблагоприятного воздействия.

Эргономические параметры экрана монитора:

Снижение контраста изображения в условиях интенсивной внешней засветки;

Зеркальные блики от передней поверхности экранов мониторов;

Наличие мерцания изображения на экране монитора.

Излучательные характеристики монитора:

Электромагнитное поле монитора в диапазоне частот 20 Гц ÷ 1000 МГц;

Статический электрический заряд на экране монитора;

Ультрафиолетовое излучение в диапазоне 200 ÷ 400 нм;

Инфракрасное излучение в диапазоне 1 050 нм ÷ 1 мм;

Рентгеновское излучение > 1,2 кэВ.

Компьютер как источник переменного электромагнитного поля. Основными составляющими частями персонального компьютера (ПК) являются: системный блок (процессор) и разнообразные устройства ввода/вывода информации: клавиатура, дисковые накопители, принтер, сканер и т.п. Каждый персональный компьютер включает средство визуального отображения информации, называемое по-разному – монитор, дисплей. Как правило, в его основе – устройство на основе электронно-лучевой трубки. ПК часто оснащают сетевыми фильтрами (например, типа «Pilot»), источниками бесперебойного питания и другим вспомогательным электрооборудованием. Все эти элементы при работе ПК формируют сложную электромагнитную обстановку на рабочем месте пользователя.

Таблица 1.8. Диапазон частот элементов ПК

Электромагнитное поле, создаваемое персональным компьютером, имеет сложный спектральный состав в диапазоне частот 0 ÷ 1000 МГц (таблица 1.9). Электромагнитное поле имеет электрическую (Е ) и магнитную (Н ) составляющие, причем взаимосвязь их достаточно сложна, поэтому оценка Е и Н производится раздельно.

Таблица 1.9. Максимальные зафиксированные на рабочем месте значения ЭМП

В части электромагнитных полей стандарту MPR II соответствуют российские санитарные нормы СанПиН 2.2.2.542-96. «Гигиенические требования к видеодисплейным терминалам, персональным ЭВМ и организации работ».

Средства защиты пользователей от ЭМП. В основном из средств защиты предлагаются защитные фильтры для экранов мониторов. Они используются для ограничения действия на пользователя вредных факторов со стороны экрана монитора.

Технический прогресс имеет и обратную сторону. Глобальное использование различной техники, работающей от электричества, стало причиной загрязнения, которому дали название – электромагнитный шум. В этой статье мы рассмотрим природу этого явления, степень его воздействия на организм человека и меры защиты.

Что это такое и источники излучения

Электромагнитное излучение – это электромагнитные волны, которые возникают при возмущении магнитного или электрического поля. Современная физика трактует этот процесс в рамках теории корпускулярно-волнового дуализма. То есть, минимальной порцией электромагнитного излучения является квант, но в тоже время оно имеет частотно-волновые свойства, определяющие его основные характеристики.

Спектр частот излучения электромагнитного поля, позволяет классифицировать его на следующие виды:

  • радиочастотное (к ним относятся радиоволны);
  • тепловое (инфракрасное);
  • оптическое (то есть, видимое глазом);
  • излучение в ультрафиолетовом спектре и жесткое (ионизированное).

Детальную иллюстрацию спектрального диапазона (шкала электромагнитных излучений), можно увидеть на представленном ниже рисунке.

Природа источников излучения

В зависимости от происхождения, источники излучения электромагнитных волн в мировой практике принято классифицировать на два вида, а именно:

  • возмущения электромагнитного поля искусственного происхождения;
  • излучение, исходящее от естественных источников.

Излучения, исходящие от магнитного поля поле вокруг Земли, электрических процессов в атмосфере нашей планеты, ядерного синтеза в недрах солнца – все они естественного происхождения.

Что касается искусственных источников, то они побочное явление, вызванное работой различных электрических механизмов и приборов.

Исходящее от них излучение, может быть низкоуровневым и высокоуровневым. От уровней мощности источников полностью зависит степень напряженности излучения электромагнитного поля.

В качестве примера источников с высоким уровнем ЭМИ можно привести:

  • ЛЭП, как правило, высоковольтные;
  • все виды электротранспорта, а также сопутствующая ему инфраструктура;
  • теле- и радиовышки, а также станции передвижной и мобильной связи;
  • установки для преобразования напряжения электрической сети (в частности, волны исходящие от трансформатора или распределяющей подстанции);
  • лифты и другие виды подъемного оборудования, где используется электромеханическая силовая установка.

К типичным источникам, излучающим низкоуровневые излучения можно отнести следующее электрооборудование:

  • практически все устройства с ЭЛТ дисплеем (например: платежный терминал или компьютер);
  • различные типы бытовой техники, начиная от утюгов и заканчивая климатическими системами;
  • инженерные системы, обеспечивающие подачу электричества к различным объектам (подразумеваются не только кабель электропередач, а сопутствующее оборудование, например розетки и электросчетчики).

Отдельно стоит выделить специальное оборудование, используемое в медицине, которое испускает жесткое излучение (рентгеновские аппараты, МРТ и т.д.).

Влияние на человека

В ходе многочисленных исследований радиобиологи пришли к неутешительному выводу – длительное излучение электромагнитных волн может стать причиной «взрыва» болезней, то есть оно вызывает бурное развитие паталогических процессов в организме человека. Причем многие из них вносят нарушения на генетическом уровне.

Видео: Как влияет электромагнитное излучение на людей.
https://www.youtube.com/watch?v=FYWgXyHW93Q

Это происходит из-за того, что у электромагнитного поля высокий уровень биологической активности, что негативно отражается живых организмах. Фактор влияния зависит от следующих составляющих:

  • характер производимого излучения;
  • как долго и с какой интенсивностью оно продолжается.

Влияние на здоровье человека излучения, у которого электромагнитная природа, напрямую зависит от локализации. Она может быть как местного, так и общего характера. В последнем случае происходит масштабное облучение, например излучение, производимое ЛЭП.

Соответственно, под местным облучением подразумевается воздействие на определенные участки тела. Исходящие от электронных часов или мобильного телефона электромагнитные волны, яркий пример локального воздействия.

Отдельно необходимо отметить термальное воздействие высокочастотного электромагнитного излучения на живую материю. Энергия поля преобразуется в тепловую энергию (за счет вибрации молекул), на этом эффекте основа работа промышленных СВЧ излучателей, используемых для нагрева различных веществ. В отличие от пользы в производственных процессах, термальное воздействие на организм человека может оказаться пагубным. С точки зрения радиобиологии находиться возле «теплого» электрооборудования не рекомендуется.

Необходимо принять во внимание, что в быту мы регулярно подвергаемся облучению, причем это происходит не только на производстве, а и дома или при перемещении по городу. Со временем биологический эффект накапливается и усиливается. С ростом электромагнитного зашумления возрастает количество характерных заболеваний мозга или нервной системы. Заметим, что радиобиология довольно молодая наука, поэтому вред наносимый живым организмам от электромагнитного излучения досконально не изучен.

На рисунке виден, уровень электромагнитных волн, производимых обычными, используемыми в быту приборами.


Обратите внимание, что уровень напряженности поля существенно снижается на расстоянии. То есть, чтобы уменьшит его действие, достаточно отдалиться от источника на определенное расстояние.

Формула для расчета нормы (нормирование) излучения электромагнитного поля указана в соответствующих ГОСТах и СанПиНах.

Защита от излучения

На производстве в качестве средств, защищающих от облучения, активно применяются поглощающие (защитные) экраны. К сожалению, защититься от излучения электромагнитного поля при помощи такого оборудования в домашних условиях не представляется возможным, поскольку оно на это не рассчитано.

  • чтобы свести воздействие излучения электромагнитного поля практически к нулю, следует отойти от ЛЭП, радио- и телевышек на расстояние не менее 25 метров (необходимо учитывать мощность источника);
  • для ЭЛТ монитора и телевизора это расстояние значительно меньше – около 30 см;
  • электронные часы не следует ставить близко подушке, оптимальное расстояние для них более 5 см;
  • что касается для радио и сотовых телефонов, подносить их ближе, чем на 2,5 сантиметра не рекомендуется.

Заметим, что многие знают, как опасно стоять рядом с высоковольтными линиями электропередач, но при этом большинство людей не придают значения, обычным бытовым электроприборам. Хотя достаточно поставить системный блок на пол или переместить подальше, и вы обезопасите себя и своих близких. Советуем проделать это, после чего замерять фон от компьютера используя детектор излучения электромагнитного поля, чтобы наглядно убедиться в его снижении.

Этот совет также касается и размещения холодильника, многие ставят его неподалеку от кухонного стола, практично, но небезопасно.

Никакая таблица не сможет указать точное безопасное расстояние от конкретного электрооборудования, поскольку излучения может варьироваться, как в зависимости от модели устройства, так и страны производителя. В настоящий момент нет единого международного стандарта, поэтому в разных странах нормы могут иметь существенные расхождения.

Точно определить интенсивность излучения можно при помощи специального прибора – флюксметра. Согласно принятым в России нормам, максимально допустимая доза не должна превышать 0,2мкТл. Рекомендуем произвести замер в квартире, используя указанный выше прибор для измерения степени излучения электромагнитного поля.

Флюксметр – прибор для измерения степени излучения электромагнитного поля

Старайтесь сократить время, когда вы подвергаетесь облучению, то есть, не находитесь долго рядом с работающими электротехническими приборами. Например, совсем не обязательно постоянно стоять у электроплиты или СВЧ-печки во время приготовления пищи. Касательно электрооборудования можно заметить, что теплое, не всегда означает безопасное.

Всегда выключайте неиспользуемые электроприборы. Люди зачастую оставляют включенными различные устройства, не учитывая, что в это время от электротехники исходит электромагнитное излучение. Выключите ноутбук, принтер или другое оборудование, ненужно лишний раз подвергаться облучению, помните про свою безопасность.