Стенки кровеносных сосудов, эндотелий. Что такое эндотелий – или почему мы стареем? При дисфункции эндотелия наблюдается

743 0

Нарушение апоптоза эндотелиальных клеток

Как уже отмечалось, апоптоз рассматривается как активный процесс гибели клеток, который морфологически отличается от некроза.

Он встречается как в норме, так и на фоне разнообразных патологических процессов.

Полагают, что нарушение этого процесса вносит существенный вклад не только в развитие аутоиммунных болезней, но и играет важную роль в патогенезе сосудистых заболеваний человека (атеросклероз , антифосфолипидный синдром (АФС) , системные васкулиты и др.) .

Ряд веществ, играющих ключевые роли в развитии воспалительных и аутоиммунных реакций, также вызывают апоптоз эндотелия сосудов. Показано, что введение липополисахаридов (ЛПС) экспериментальным животным приводит к массивной гибели эндотелиальных клеток (ЭК) аорты . Этот феномен рассматривается как самое раннее проявление апоптоза, предшествующее фрагментации ДНК и нарушению целостности мембраны клетки .

Известно, что при активации тромбоцитов экспонирование ФС приводит к запуску свертывания крови . Отрицательно заряженные фосфолипиды принимают участие в фактор VIII и IХа-зависимои активации фактора X на ЭК. Аннексии V полностью ингибирует эту реакцию .

Подвергнутые апоптозу эндотелиальные клетки способны увеличивать скорость активации фактора X. При этом на их поверхности появляется ФС . Подобным образом происходит увеличение числа молекул анионных фосфолипидов на мембране моноцитов, которое сопровождается увеличением активности протромбиназного комплекса .

По данным ряда авторов, эндоксинстимулированные ЭК и тканевые факторы, продуцирующиеся моноцитами в процессе развития апоптоза этих клеток, обладают прокоагулянтной активностью . Важно отметить, что провоспалительные цитокины, эндотоксины, гипоксия, гомоцистеинемия подавляют активность тромбомодулина и гепарансульфата на поверхности эндотелия. В то же время они индуцируют апоптоз ЭК .

Все это свидетельствует о том, что нарушение нормальных механизмов апоптоза ЭК может иметь важное значение в развитии нарушений свертывания крови у больных системными васкулитами, атеросклеротическим поражением сосудов и особенно АФС .

В недавних исследованиях было показано, что плазма от больных с тромботической тромбоцитопенической пурпурой и гемолитико-уремическим синдромом вызывает апоптоз клеток микрососудистого эндотелия, полученных из кожи, почек и мозга .

Данный феномен сопровождался появлением на их мембране Fas (CD95) - молекулы, ассоциированной с апоптозом. Напротив, в эндотелиальных клетках легочных и печеночных микрососудов не наблюдалось подобных изменений. Эти данные позволяют обсуждать причины редкого поражения сосудов почек и легких при этих состояниях, а возможно и при некоторых формах васкулитов и антифосфолипидном синдроме.

Нарушение антикоагулянтной активности эндотелиальных клеток

В норме сосудистый эндотелий обладает мощной антикоагулянтной активностью. Подавление процесса свертывания крови происходит за счет нескольких механизмов.

Благодаря наличию на его поверхности: тромбомодулина и белка S, способствующих активации белка С ; гепарансульфата, который через активацию антитромбина III ускоряет образование тромбина

За счет синтеза: ингибиторов тканевых факторов, блокирующих образование комплекса тканевой фактор - VIIa-Xa ; аннексина V, предотвращающего связывания факторов свертывания ; тканевого активатора плазминогена.

Под влиянием разнообразных воздействий, включающих провоспалительные цитокины (ИЛ-1, ФНО-а), ЛПС, атерогенные субстанции (ЛП(а), гомоцистеин), гипоксию, гипертермию, инфекции, аутоантитела и иммунные комплексы (ИК) , ЭК быстро теряют свой антикоагулянтный потенциал и переходят в протромботическое состояние (рис. 3.1).

Рис. 3.1. Связь между воспалением и гиперкоагуляцией

Изменение при активации или апоптозе функциональных свойств ЭК, нарушение целостности эндотелиального слоя и связанные с ними тромботические и/или окклюзионные изменения в сосудах имеют большое значение в патогенезе отдельных клинических синдромов (нефрит), а также некоторых форм системных васкулитов (геморрагическиай васкулит, артериит Такаясу, гигантоклеточный артериит (ГКА) , болезнь Кавасаки и др.).

Так, по данным J.D.Costing и соавт. (1992), при СКВ мишенью для аФЛ могут являться отдельные компоненты коагуляционного каскада, такие, как белок С и белок S, экспрессирующиеся на мембране эндотелия. Антитела к фосфолипидам, как и а-нДНК, могут перекрестно связываться с отрицательно заряженными эпитопами гликозаминогликана, являющегося основным компонентом нетромбогенного выстилающего слоя сосудистого эндотелия, и ингибировать гепаринзависимую активацию антитромбина III .

Низкая концентрации в плазме крови общего белка S обнаружена у больных с артериитом Такаясу, лейкоцитокластическим и геморрагическим васкулитами [А.А.Баранов и соавт., 1996; K.V.Salojin et al.,1996]. В активную фазу системных васкулитов отмечается снижение выработки эндотелием тканевого активатора плазминогена .

В то же время ЭК начинают синтезировать ряд прокоагулянтных субстанций. К ним относятся тканевые факторы, фактор V, ФАТ, фактор фон Виллебранда, ингибитор тканевого активатора плазминогена . Эти вещества также принимают участие в патогенезе васкулитов.

Ингибитор тканевого активатора плазминогена

Нарушение антикоагулянтной активности эндотелиальных клеток при васкулитах также может быть опосредовано через нарушение процесса фибринолиза.

Известно, что в норме разрушение фибрина происходит при участии протеолитического фермента - плазмина, который в свою очередь получается из плазминогена под воздействием урокиназы или тканевого активатора плазминогена. Тканевой активатор плазминогена наиболее важен для этого процесса.

Он вырабатывается в ЭК и высвобождается из них в кровоток. Его дальнейший метаболизм происходит по трем направлениям. Так, одна часть тканевого активатора плазминогена подвергается разрушению в клетках печени, другая соединяется с депозитами фибрина и активирует плазминоген, а третья необратимо инактивируется его ингибитором. При высокой концентрации последнего вещества в плазме крови быстрой (менее чем за 1) инактивации подвергается большое количество циркулирующего тканевого активатора плазминогена.

Как отмечалось выше, при системных васкулитах на фоне высокой активности воспалительного процесса в плазме крови выявляется низкий уровень тканевого активатора плазминогена. В некоторых случаях это происходит на фоне увеличения синтеза эндотелием его ингибитора . Причем данные нарушения регистрируются в течение длительного периода времени даже у клинически неактивных больных .

Фактор фон Виллебранда и антиген фактора фон Виллебранда

Многими исследователями при системных васкулитах отмечено увеличение концентрации в сыворотке крови фактора фон Виллебранда (ФВ) и антигена фактора фон Виллебранда (ФВ:Аг) [А.А.Баранов и соавт., 1993; A.D.Woolf et al., 1987; B.Bliel et al., 1991; A.D.Blann,1993].

Однако в настоящее время неясно, имеет ли этот феномен какое-либо патогенетическое значение, или он отражает лишь степень выраженности эндотелиальной дисфункции при этих заболеваниях.

Участие ФВ в развитии системных васкулитов и сосудистой патологии при диффузных заболеваниях соединительной ткани, по-видимому, непосредственно связано с его биологической ролью в организме человека. Известно, что ФВ участвует в адгезии тромбоцитов к субэндотелию в зоне сосудистого повреждения.

Он обеспечивает связь между мембранными гликопротеинами не активированных (GPIb-IX) тромбоцитов и субэндотелиальными молекулами (коллаген типа I и III и гепарансульфат); взаимодействуя с GPIIb/IIIa рецепторами, усиливает агрегацию тромбоцитов, а также способствует активации фактора VIII тромбином .

В плазме ФВ:Аг в основном представлен пулом, синтезированным эндотелием, который в норме циркулирует в виде мультимеров, однако наряду с ним встречается и незначительное количество необычно больших форм этого гликопротеида. Последние обладают способностью более эффективно связываться с рецепторами тромбоцитов (GPIb-IX, GPIIb-IIIa). В плазме также присутствуют субстанции, которые расщепляют большие формы ФВ:Аг до маленьких, не действуя, однако, на его фракцию, находящуюся в субэндотелии .

Полагают, что при постоянной выработке клетками эндотелия антигена фактора фон Виллебранда имеет нормальную структуру . Стимуляция эндотелия (окислительный стресс, механическая травма, гистамин, мембраноатакующий комплекс комплемента и др.) сопровождается как усилением синтеза этого гликопротеида, так и его высвобождением из компонентов цитоплазмы эндотелия (тельца Weibel - Palade).

В последних хранятся мультимеры ФВ:Аг, обладающие высокой функциональной активностью в отношении связывания с мембранными рецепторами неактивированных тромбоцитов и адгезии последних к субэндотелию .

Усиление выработки ФВ:Аг отмечено при инфекциях, стимуляции ЭК эндотоксином и провоспалительными цитокинами ИЛ-1, ИФ-у, ФНО-а .

Высокая концентрация ФВ:Аг обнаружена у больных гранулематозом Вегенера и ГКА, имеющих сопутствующие инфекции [Т.В.Бекетова и соавт.,1996; M.C.Cid et al.,1996]. Способностью индуцировать его продукцию в культуре эндотелия обладают фракции IgG, выделенные из сывороток больных АФС или содержащие а-нДНК с активностью антител к эндотелиальным клеткам (АЭКА) .

Возможное участие антигена фактора фон Виллебранда в развитии системных васкулитов находит свое объяснение на примере гемолитико-уремического синдрома и тромботической тромбоцитопенической пурпуры (ТТП) , при которых увеличение в сыворотке крови макромолекулярной формы этого гликопротеида рассматривается в качестве одного из основных патогенетических механизмов данных заболеваний . При системных васкулитах также обнаружена продукция эндотелием подобных субстанций .

Известно, что основные морфологические изменения при ТТП и гемолитико-уремическом синдроме характеризуются тромботической васкулопатией . Наблюдаются сегментарные окклюзии артериол, капилляров и венул гиалиновыми тромбами. Наиболее выраженные изменения отмечаются в головном мозге, почках, сердце, селезенке.

На ранних стадиях заболевания тромбы в артериолах и капиллярах состоят преимущественно из тромбоцитов, без периваскулярной инфильтрации, в которых при иммуногистохимическом анализе обнаруживается большое количество ФВ:Аг и немного фибриногена или фибрина .

При первичном и вторичном антифосфолипидном синдроме в почках наблюдаются сходные изменения [З.С.Алекберова и соавт., 1995; Н.Л.Козловская и соавт.,1995; Е.Л.Насонов и соавт.,1995; M.A.Byron et al., 1987], а у больных СКВ описаны гломерулярные тромбы и депозиция фибрина при нефрите . Кроме того, при этом заболевании высокий уровень ФВ:Аг в сыворотке крови четко ассоциируется с поражением почек.

Подобная клинико-лабораторная взаимосвязь прослеживается и при некоторых формах васкулитов (гранулематоз Вегенера, узелковый полиартериит (УП) , геморрагический васкулит) [А.А.Баранов и соавт., 1993]. Не исключается, что в этих случаях изменения в микрососудах почек могут быть опосредованы через механизмы, сходные с таковыми при гемолитико-уремическом синдроме и ТТП.

В последнее время на мембранах молодых эритроцитов открыты рецепторы, подобные тромбоцитарным, с которыми могут взаимодействовать мультиформы фактора фон Виллебранда. Подобные структуры обнаружены и на мембранах эндотелия . Таким образом, ретикулоциты и другие юные формы эритроцитов могут прикрепляться к эндотелиальным клеткам через мультимеры ФВ, а затем участвовать в тромбообразовании.

Создается впечатление, что при определенном круге патологических состояний повышенный уровень антигена фактора фон Виллебранда может рассматриваться не только как маркер тяжелого поражения сосудов кожи и почек, но и принимать активное участие в их развитии.

Возможно, что поступление в кровоток избыточного количества аномальных форм ФВ:Аг, способных более эффективно связываться с мембранными рецепторами тромбоцитов, эритроцитов, и формирование затем тромбов в микрососудах усиливают уже имеющиеся при некоторых системных васкулитах нарушения реологии крови (криоглобулины, циркулирующие иммунные комплексы (ЦИК) ) и способствуют дальнейшему прогрессированию ишемических изменений в тканях.

Важно отметить, что при системных васкулитах, а также при системной красной волчанке в активную фазу болезни высокий уровень ФВ:Аг нередко сочетается с нарушением фибринолитической активности плазмы крови .

Насонов Е.Л., Баранов А.А., Шилкина Н.П.

Ранее мы отмечали, что на состав крови существенное влияние оказывает эндотелий сосудистой стенки. Известно, что диаметр среднего капилляра равен 6-10 мкм, его длина около 750 мкм. Суммарное поперечное сечение сосудистого русла в 700 раз превышает диаметр аорты. Общая площадь сети капилляров составляет 1000 м 2 . Если учесть, что в обмене участвуют пре- и посткапиллярные сосуды, эта величина вырастает вдвое. Здесь протекают десятки, а скорее всего – сотни биохимических процессов, связанных с межклеточным обменом: его организацией, регуляцией, реализацией. По современным представлениям эндотелий – это активный эндокринный орган, самый большой в организме и диффузно рассеянный по всем тканям. Эндотелий синтезирует соединения, важные для свертывания крови и фибринолиза, адгезии и агрегации тромбоцитов. Он является регулятором деятельности сердца, тонуса сосудов, кровяного давления, фильтрационной функции почек и метаболической деятельности мозга. Он контролирует диффузию воды, ионов, продуктов метаболизма. Эндотелий реагирует на механическое давление крови (гидростатическое давление). Учитывая эндокринные функции эндотелия, британский фармаколог, лауреат Нобелевской премии Джон Вейн назвал эндотелий “маэстро кровообращения”.

Эндотелий синтезирует и выделяет большое количество биологически активных соединений, которые высвобождаются согласно текущей потребности. Функции эндотелия определяются наличием следующих факторов:

1. контролирующих сокращение и расслабление мышц сосудистой стенки, что определяет её тонус;

2. участвующих в регуляции жидкого состояния крови и способствующих тромбообразованию;

3. контролирующих рост сосудистых клеток, их репарацию и замещение;

4. принимающих участие в иммунном ответе;

5. Участвующих в синтезе цитомединов или клеточных медиаторов, обеспечивающих нормальную деятельность сосудистой стенки.

Оксид азота. Одной изсамых важных молекул, продуцируемых эндотелием, является оксид азота, конечная субстанция, осуществляющая многие регуляторные функции. Синтез оксида азота осуществляется из L-аргинина конститутивным ферментом NO-синтазой. К настоящему времени идентифицированы три изоформы NO-синтаз, каждая из которых представляет собой продукт отдельного гена, кодируется и идентифицируется в разных типах клеток. В эндотелиальных клетках и в кардиомиоцитах имеется так называемая NO-синтаза 3 (есNOs или NOs3 )

Оксид азота присутствует во всех типах эндотелия. Даже в покое эндотелиоцит синтезирует определенное количество NO, поддерживая базальный тонус сосудов.

При сокращении мышечных элементов сосуда, снижении парциального напряжения кислорода в ткани в ответ на повышение концентрации ацетилхолина, гистамина, норадреналина, брадикинина, АТФ и др. синтез и секреция NO эндотелием усиливается. Продукция оксида азота в эндотелии также зависит от концентрации кальмодулина и ионов Са 2+ .

Функция NO сводится к торможению работы сократительного аппарата гладкомышечных элементов. При этом активируется фермент гуанилатциклаза и образуется посредник (мессенджер) – циклический 3 / 5 / -гуанозинмонофосфат.

Установлено, что инкубация эндотелиальных клеток в присутствии одного из провоспалительных цитокинов – TNFa – приводит к уменьшению жизнеспособности эндотелиальных клеток. Но если усиливается образование оксида азота, то эта реакция защищает эндотелиальные клетки от действия TNFa. В то же время ингибитор аденилатциклазы 2 / 5 / -дидезоксиаденозин полностью подавляет цитопротекторный эффект донора NO. Следовательно, одним из путей действия NO может быть цГМФ-зависимое ингибирование распада цАМФ.

Что же делает NO?

Оксид азота тормозит адгезию и агрегацию тромбоцитов и лейкоцитов, что связано с образованием простациклина. Одновременно он ингибирует синтез тромбоксана А 2 (ТхА 2). Оксид азота тормозит активность ангиотензина II, вызывающего повышение тонуса сосудов.

NO регулирует локальный рост эндотелиальных клеток. Являясь свободнорадикальным соединением с высокой реактивной способностью, NO стимулирует токсическое действие макрофагов на опухолевые клетки, бактерии и грибки. Оксид азота противодействует оксидантному повреждению клеток, вероятно, из-за регуляции механизмов синтеза внутриклеточного глутатиона.

С ослаблением генерации NO связано возникновение гипертензии, гиперхолестеринемии, атеросклероза, а также спастических реакций коронарных сосудов. Кроме того, нарушение генерации оксида азота приводит к дисфункции эндотелия, касающейся образования биологически активных соединений.

Эндотелин. Одним из самых активных пептидов, выделяемых эндотелием, является сосудосуживающий фактор эндотелин, действие которого проявляется в чрезвычайно малых дозах (в одну миллионную мг). В организме присутствуют 3 изоформы эндотелина, чрезвычайно мало отличающиеся по своему химическому составу друг от друга, включающие по 21 аминокислотному остатку и значительно различающиеся по механизму своего действия. Каждый эндотелин является продуктом отдельного гена.

Эндотелин 1 – единственный из этого семейства, который образуется не только в эндотелии, но и в гладкомышечных клетках, а также в нейронах и астроцитах головного и спинного мозга, мезангиальных клетках почки, эндометрии, гепатоцитах и эпителиоцитах молочной железы. Основными стимулами образования эндотелина 1 являются гипоксия, ишемия и острый стресс. До 75% эндотелина 1 секретируется эндотелиальными клетками в направлении гладкомышечных клеток сосудистой стенки. При этом эндотелин связывается с рецепторами на их мембране, что, в конечном итоге, приводит к их констрикции.

Эндотелин 2 – основным местом его образования являются почки и кишечник. В небольших количествах он обнаруживается в матке, плаценте и миокарде. По своим свойствам практически не отличается от эндотелина 1.

Эндотелин 3 постоянно циркулирует в крови, но его источник образования не известен. В высоких концентрациях он обнаружен в головном мозге, где, как предполагается, он регулирует такие функции, как пролиферация и дифференцировка нейронов и астроцитов. Кроме того, он найден в желудочно-кишечном тракте, легких и почках.

Учитывая функции эндотелинов, а также их регуляторную роль в межклеточных взаимодействиях, многие авторы считают, что эти пептидные молекулы следует отнести к цитокинам.

Синтез эндотелина стимулируется тромбином, адреналином, ангиотензином, интерлейкином-I (IL-1) и различными ростовыми факторами. В большинстве случаев эндотелин секретируется из эндотелия внутрь, к мышечным клеткам, где расположены чувствительные к нему рецепторы. Различают три типа эндотелиновых рецепторов: А, В и С. Все они располагаются на мембранах клеток различных органов и тканей. Эндотелиальные рецепторы относятся к гликопротеидам. Большая часть синтезируемого эндотелина взаимодействует с ЭтА-рецепторами, меньшая – с рецепторами ЭтВ-типа. Действие эндотелина 3 опосредуется через ЭтС-рецепторы. При этом они способны стимулировать синтез оксида азота. Следовательно, при помощи одного и того же фактора регулируются 2 противоположные сосудистые реакции – сокращение и расслабление, реализуемые различными механизмами. Следует, однако, заметить, что в естественных условиях, когда происходит медленное накопление концентрации эндотелинов, наблюдается вазоконстрикторный эффект, обусловленный сокращением гладкой мускулатуры сосудов.

Эндотелин, безусловно, причастен к ишемической болезни сердца, острому инфаркту миокарда, нарушениям ритма сердца, атеросклеротическим повреждениям сосудов, легочной и сердечной гипертензии, ишемическим повреждениям мозга, диабету и другим патологическим процессам.

Тромбогенные и тромборезистентные свойства эндотелия. Эндотелий играет чрезвычайно важную роль в сохранении жидкого состояния крови. Повреждение эндотелия неминуемо ведет к адгезии (прилипанию) тромбоцитов и лейкоцитов, благодаря чему образуются белые (состоящие из тромбоцитов и лейкоцитов) или красные (включающие в сгусток эритроциты) тромбы. В связи со сказанным можно считать, что эндокринная функция эндотелия сводится, с одной стороны, к поддержанию жидкого состояния крови, а с другой – к синтезу и высвобождению факторов, способных приводить к остановке кровотечения.

К факторам, способствующим остановке кровотечения, следует отнести комплекс соединений, приводящих к адгезии и агрегации тромбоцитов, образованию и сохранению фибринового сгустка. К соединениям, обеспечивающим жидкое состояние крови, принадлежат ингибиторы агрегации и адгезии тромбоцитов, естественные антикоагулянты и факторы, приводящие к растворению фибринового сгустка. Остановимся на характеристике перечисленных соединений.

Известно, что к веществам, индуцирующим адгезию и агрегацию тромбоцитов и образуемым эндотелием, относятся тромбоксан А 2 (ТхА 2), фактор фон Виллебранда (vWF), фактор активации тромбоцитов (PAF), аденозиндифосфорная кислота (ADP).

ТхА 2 , в основном, синтезируется в самих тромбоцитах, однако это соединение способно также образовываться и из арахидоновой кислоты, входящей в состав эндотелиальных клеток. Действие ТхА 2 проявляется в случае повреждения эндотелия, благодаря чему возникает необратимая агрегация тромбоцитов. Следует заметить, что ТхА 2 обладает довольно сильным сосудосуживающим действием и играет немаловажную роль в возникновении коронароспазма.

vWF синтезируется неповрежденным эндотелием и необходим как для адгезии, так и агрегации тромбоцитов. Различные сосуды в неодинаковой степени способны синтезировать этот фактор. Высокий уровень транспортной РНК vWF обнаружен в эндотелии сосудов легких, сердца, скелетных мышц, тогда как в печени и почках его концентрация сравнительно невысока.

PAF образуется многими клетками, в том числе и эндотелиоцитами. Это соединение способствует экспрессии основных интегринов, принимающих участие в процессах адгезии и агрегации тромбоцитов. PAF обладает широким спектром действия и играет важную роль в регуляции физиологических функций организма, а также в патогенезе многих патологических состояний.

Одним из соединений, принимающих участие в агрегации тромбоцитов, является AДФ. При повреждении эндотелия выделяется, главным образом, аденозинтрифосфат (ATФ), который под действием клеточной АТФ-азы быстро переходит в АДФ. Последняя запускает процесс агрегации тромбоцитов, который на первых этапах носит обратимый характер.

Действию соединений, способствующих адгезии и агрегации тромбоцитов, противостоят факторы, ингибирующие эти процессы. К ним в первую очередь относится простациклин или простагландин I 2 (PgI 2). Синтез простациклина неповрежденным эндотелием происходит постоянно, однако его освобождение наблюдается лишь в случае действия стимулирующих агентов. PgI 2 ингибирует агрегацию тромбоцитов за счет образования цАМФ. Кроме того, ингибиторами адгезии и агрегации тромбоцитов являются оксид азота (см. выше) и экто-АДФ-аза, расщепляющая AДФ до аденозина, служащего ингибитором агрегации.

Факторы, способствующие свертыванию крови. Сюда следует отнести тканевой фактор , который под воздействием различных агонистов (IL-1, IL-6, TNFa, адреналин, липополисахарид (ЛПС) грамотрицательных бактерий, гипоксия, кровопотеря) усиленно синтезируется эндотелиальными клетками и поступает в кровоток. Тканевой фактор (FIII) запускает так называемый внешний путь свертывания крови. В условиях нормы тканевой фактор эндотелиальными клетками не образуется. Однако любые стрессовые ситуации, мышечная активность, развитие воспалительных и инфекционных заболеваний приводят к его образованию и стимуляции процесса свертывания крови.

К факторам, препятствующим свертыванию крови, относятся естественные антикоагулянты . Следует заметить, что поверхность эндотелия покрыта комплексом гликозамингликанов, обладающих противосвертывающей активностью. К ним причисляют гепаран-сульфат, дерматан-сульфат, способные связываться с антитромбином III, а также повышать активность кофактора II гепарина и тем самым увеличивать антитромбогенный потенциал.

Эндотелиальные клетки синтезируют и секретируют 2 ингибитора внешнего пути свертывания крови (TFPI-1 иTFPI-2 ), блокирующие образование протромбиназы. TFPI-1 способен связывать факторы VIIa и Ха на поверхности тканевого фактора. TFPI-2, являясь ингибитором сериновых протеаз, нейтрализует факторы свертывания, принимающие участие во внешнем и внутреннем пути образования протромбиназы. В то же время он является более слабым антикоагулянтом, чем TFPI-1.

Эндотелиальные клетки синтезируют антитромбин III (А-III), который при взаимодействии с гепарином нейтрализует тромбин, факторы Ха, IХa, калликреин и др.

Наконец, к естественным антикоагулянтам, синтезируемым эндотелием, относится система тромбомодулин–протеин С (PtC), куда входит также протеин S (PtS). Этот комплекс естественных антикоагулянтов нейтрализует факторы Va и VIIIa.

Факторы, влияющие на фибринолитическую активность крови. В эндотелии содержится комплекс соединений, способствующих и препятствующих растворению фибринового сгустка. В первую очередь следует указать на тканевой активатор плазминогена (ТАП, TPA) – основной фактор, переводящий плазминоген в плазмин. Кроме того, эндотелий синтезирует и секретирует урокиназный активатор плазминогена. Известно, что последнее соединение синтезируется также в почках и выделяется вместе с мочой.

В то же время в эндотелии синтезируются и ингибиторы тканевого активатора плазминогена (ИТАП, ITPA) I, II и III типов . Все они отличаются по своей молекулярной массе и биологической активности. Наиболее изученным из них является ИТАП I типа. Он постоянно синтезируется и секретируется эндотелиоцитами. Другие ИТАП играют менее заметную роль в регуляции фибринолитической активности крови.

Следует заметить, что в физиологических условиях действие активаторов фибринолиза преобладает над влиянием ингибиторов. При стрессе, гипоксии, физической нагрузке наряду с ускорением свертывания крови отмечается активация фибринолиза, что связано с выбросом ТАП из эндотелиальных клеток. Между тем, ингибиторы ТАП содержатся в эндотелиоцитах в избытке. Их концентрация и активность преобладают над действием ТАП, хотя поступление в кровоток в естественных условиях значительно ограничен. При истощении же запасов ТАП, что наблюдается при развитии воспалительных, инфекционных и онкологических заболеваний, при патологии сердечно-сосудистой системы, при нормальной и особенно патологической беременности, а также при генетически обусловленной недостаточности, начинает преобладать действие ИТАП, благодаря чему наряду с ускорением свертывания крови развивается торможение фибринолиза.

Факторы, регулирующие рост и развитие сосудистой стенки. Известно, что эндотелий синтезирует фактор роста сосудов. В то же время в эндотелии содержится соединение, ингибирующее ангиогенез.

Одним из основных факторов ангиогенеза является так называемый сосудистый фактор роста эндотелия или VGEF (от слов vascular growth endothelial cell factor), который обладает способностью индуцировать хемотаксис и митогенез ЭК и моноцитов и играет важную роль не только в неоангиогенезе, но и васкулогенезе (раннее формирование кровеносных сосудов у плода). Под его воздействием усиливается развитие колатералей и сохраняется целостность эндотелиального слоя.

Фактор роста фибробластов (FGF) имеет отношение не только кразвитию и росту фибробластов, но и участвует в контроле за тонусом гладкомышечных элементов.

Одним из главных ингибиторов ангиогенеза, влияющих на адгезию, рост и развитие эндотелиальных клеток, является тромбоспондин. Это гликопротеин целлюлярного матрикса, синтезируемый различными типами клеток, в том числе эндотелиальными. Синтез тромбоспондина контролируется онкогеном Р53.

Факторы, принимающие участие в иммунитете. Известно, что эндотелиальные клетки играют чрезвычайно важную роль в осуществлении как клеточного, так и гуморального иммунитета. Установлено, что эндотелиоциты являются антигенпрезентирующими клетками (АПК), то есть способны перерабатывать антиген (Аг) в иммуногенную форму и «преподносить» его Т- и В-лимфоцитам. На поверхности эндотелиальных клеток содержатся HLA как I, так и II классов, что служит необходимым условием для презентации антигена. Из сосудистой стенки и, в частности, из эндотелия выделен комплекс полипептидов, усиливающих экспрессию рецепторов на Т- и В-лимфоцитах. В то же время эндотелиальные клетки способны продуцировать ряд цитокинов, способствующих развитию воспалительного процесса. К подобным соединениям относятся IL-1 a и b, TNFa, IL-6, a- и b-хемокины и другие. Кроме того, эндотелиальные клетки выделяют ростовые факторы, оказывающие влияние на гемопоэз. К ним относятся гранулоцитарный колониестимулирующий фактор (Г-КСФ, G-СSF), макрофагальный колониестимулирующий фактор (М-КСФ, M-СSF), гранулоцитарно-макрофагальный колониестимулирующий фактор (ГМ-КСФ, G-MСSF) и другие. Недавно из сосудистой стенки выделено соединение полипептидной природы, резко усиливающее процессы эритропоэза и способствующее в эксперименте ликвидации гемолитической анемии, вызванной введением четыреххлористого углерода.

Цитомедины. Эндотелий сосудов, как и другие клетки и ткани, является источником клеточных медиаторов – цитомединов. Под воздействием этих соединений, представляющих комплекс полипептидов с молекулярной массой от 300 до 10000 Д, нормализуется сократительная деятельность гладкомышечных элементов сосудистой стенки, благодаря чему кровяное давление сохраняется в пределах нормы. Цитомедины из сосудов способствуют процессам регенерации и репарации тканей и, возможно, обеспечивают рост сосудов при их повреждении.

Многочисленными исследованиями установлено, что все биологически активные соединения, синтезируемые эндотелием или возникающие в процессе частичного протеолиза, при определенных условиях способны поступать в сосудистое русло и таким образом оказывать влияние на состав и функции крови.

Разумеется, мы представили далеко не полный перечень факторов, синтезируемых и выделяемых эндотелием. Однако и этих сведений достаточно для вывода, что эндотелий является мощной эндокринной сетью, обеспечивающей регуляцию многочисленных физиологических функций.

Патология сердечно-сосудистой системы продолжает занимать основное место в структуре заболеваемости, смертности и первичной инвалидизации, являясь причиной уменьшения общей продолжительности и ухудшения качества жизни пациентов как во всем мире, так и в нашей стране. Анализ показателей состояния здоровья населения Украины свидетельствует, что заболеваемость и смертность от болезней кровообращения остаются высокими и составляют 61,3% от общего показателя смертности. Поэтому разработка и внедрение мероприятий, направленных на улучшение профилактики и лечения сердечно-сосудистых заболеваний (ССЗ), являются актуальной проблемой кардиологии.

Согласно современным представлениям, в патогенезе возникновения и прогрессирования многих ССЗ — ишемической болезни сердца (ИБС), артериальной гипертензии (АГ), хронической сердечной недостаточности (ХСН) и легочной гипертензии (ЛГ) — одну из основных ролей играет эндотелиальная дисфункция (ЭД).

Роль эндотелия в норме

Как известно, эндотелий представляет собой тонкую полупроницаемую мембрану, отделяющую кровоток от более глубоких структур сосуда, которая непрерывно вырабатывает огромное количество биологически активных веществ, в связи с чем является гигантским паракринным органом.

Главная роль эндотелия состоит в поддержании гомеостаза путем регуляции противоположных процессов, происходящих в организме:

  1. тонуса сосудов (баланса вазоконстрикции и вазодилатации);
  2. анатомического строения сосудов (потенцирование и ингибирование факторов пролиферации);
  3. гемостаза (потенцирование и ингибирование факторов фибринолиза и агрегации тромбоцитов);
  4. местного воспаления (выработка про- и противовоспалительных факторов).

Основные функции эндотелия и механизмы, с помощью которых он осуществляет эти функции

Эндотелий сосудов выполняет ряд функций (таблица), важнейшей из которых является регуляция сосудистого тонуса. Еще R.F. Furchgott и J.V. Zawadzki доказали, что расслабление сосудов после введения ацетилхолина происходит вследствие высвобождения эндотелием эндотелиального фактора релаксации (ЭФР), и активность этого процесса зависит от целости эндотелия. Новым достижением в изучении эндотелия было определение химической природы ЭФР — азота оксида (NO).

Основные функции эндотелия сосудов

Функции эндотелия

Основные обеспечивающие механизмы

Атромбогенность сосудистой стенки

NO, t-РА, тромбомодулин и другие факторы

Тромбогенность сосудистой стенки

Фактор Виллебранда, РАI-1, РАI-2 и другие факторы

Регуляция адгезии лейкоцитов

Р-селектин, Е-селектин, IСАМ-1, VСАМ-1 и другие молекулы адгезии

Регуляция тонуса сосудов

Эндотелии (ЭТ), NO, РGI-2 и другие факторы

Регуляция роста сосудов

VEGF, FGFb и другие факторы

Азота оксид как эндотелиальный фактор релаксации

NO — это сигнальная молекула, которая является неорганическим веществом со свойствами радикала. Малые размеры, отсутствие заряда, хорошая растворимость в воде и липидах обеспечивают ей высокую проницаемость сквозь клеточные мембраны и субклеточные структуры. Время существования NO составляет около 6 с, после чего при участии кислорода и воды он превращается в нитрат (NO 2) и нитрит (NO 3) .

NO образуется из аминокислоты L-аргинина под влиянием ферментов NO-синтаз (NOS). В настоящее время выделены три изоформы NOS: нейрональная, индуцибельная и эндотелиальная.

Нейрональная NOS экспрессируется в нервной ткани, скелетных мышцах, кардиомиоцитах, эпителии бронхов и трахеи. Это конституциональный фермент, модулируемый внутриклеточным уровнем ионов кальция и принимающий участие в механизмах памяти, координации между нервной активностью и сосудистым тонусом, реализации болевого раздражения.

Индуцибельная NOS локализована в эндотелиоцитах, кардиомиоцитах, гладкомышечных клетках, гепатоцитах, но основной ее источник — макрофаги. Она не зависит от внутриклеточной концентрации ионов кальция, активируется под влиянием различных физиологических и патологических факторов (провоспалительные цитокины, эндотоксины) в случаях, когда в этом есть необходимость.

Эндотелиальная NOS — конституциональный фермент, регулируемый содержанием кальция. При активации этого фермента в эндотелии происходит синтез физиологического уровня NO, приводящего к релаксации гладкомышечных клеток. NO, образующийся из L-аргинина, при участии фермента NOS активирует в гладкомышечных клетках гуанилатцикпазу, стимулирующую синтез циклического гуанозинмонофосфата (ц-ГМФ), который является основным внутриклеточным мессенджером в сердечно-сосудистой системе и снижает содержание кальция в тромбоцитах и гладких мышцах. Поэтому конечными эффектами NO являются дилатация сосудов, торможение активности тромбоцитов и макрофагов. Вазопротекторные функции NO заключаются в модуляции высвобождения вазоактивных модуляторов, блокировании окисления липопротеинов низкой плотности, подавлении адгезии моноцитов и тромбоцитов к сосудистой стенке.

Таким образом, роль NO не ограничивается только регуляцией сосудистого тонуса. Он проявляет ангиопротекторные свойства, регулирует пролиферацию и апоптоз, оксидантные процессы, блокирует агрегацию тромбоцитов и оказывает фибринолитический эффект. NO ответственен также за противовоспалительные эффекты.

Итак, NO оказывает разнонаправленные эффекты:

  1. прямое отрицательное инотропное действие;
  2. вазодилататорное действие:

- антисклеротическое (тормозит клеточную пролиферацию);
- антитромботическое (препятствует адгезии циркулирующих тромбоцитов и лейкоцитов к эндотелию).

Эффекты NO зависят от его концентрации, места продукции, степени диффузии через сосудистую стенку, способности взаимодействовать с кислородными радикалами и уровня инактивации.

Существуют два уровня секреции NO:

  1. Базальная секреция — в физиологических условиях поддерживает тонус сосудов в покое и обеспечивает неадгезивность эндотелия по отношению к форменным элементам крови.
  2. Стимулированная секреция — усиление синтеза NO при динамическом напряжении мышечных элементов сосуда, сниженном содержании кислорода в ткани в ответ на выброс в кровь ацетилхолина, гистамина, брадикинина, норадреналина, АТФ и др., что обеспечивает вазодилатацию в ответ на приток крови.

Нарушение биодоступности NO происходит вследствие следующих механизмов:

Снижения его синтеза (дефицит субстрата NO — L-аргинина);
- уменьшения на поверхности эндотелиальных клеток количества рецепторов, раздражение которых в норме приводит к образованию NO;
- усиления деградации (разрушение NO наступает прежде, чем вещество достигает места своего действия);
- повышения синтеза ЭТ-1 и других вазоконстрикторных субстанций.

Кроме NO, к вазодилатирующим агентам, образующимся в эндотелии, относятся простациклин, эндотелиальный фактор гиперполяризации, натрийуретический пептид С-типа и др., играющие важную роль в регуляции сосудистого тонуса при снижении уровня NO.

К основным эндотелиальным вазоконстрикторам относятся ЭТ-1, серотонин, простагландин Н 2 (ПГН 2) и тромбоксан А 2 . Самый известный и изученный из них— ЭТ-1 — оказывает непосредственное констрикторное влияние на стенку как артерий, так и вен. К другим вазоконстрикторам относятся ангиотензин II и простагландин F 2a , непосредственно действующие на гладкомышечные клетки.

Дисфункция эндотелия

В настоящее время под ЭД понимают дисбаланс между медиаторами, обеспечивающими в норме оптимальное течение всех эндотелийзависимых процессов.

Развитие ЭД одни исследователи связывают с недостатком продукции или биодоступности NO в стенке артерий, другие — с дисбалансом продукции вазодилатирующих, ангиопротекторных и ангиопролиферативных факторов, с одной стороны, и вазоконстрикторных, протромботических и пролиферативных факторов — с другой. Основную роль в развитии ЭД играют оксидантный стресс, продукция мощных вазоконстрикторов, а также цитокинов и фактора некроза опухоли, которые подавляют продукцию NO. При длительном воздействии повреждающих факторов (гемодинамическая перегрузка, гипоксия, интоксикация, воспаление) функция эндотелия истощается и извращается, в результате чего в ответ на обычные стимулы возникают вазоконстрикция, пролиферация и тромбообразование.

Кроме указанных факторов, ЭД вызывают:

Гиперхолестеролемия, гиперлипидемия;
- АГ;
- спазм сосудов;
- гипергликемия и сахарный диабет;
- курение;
- гипокинезия;
- частые стрессовые ситуации;
- ишемия;
- избыточная масса тела;
- мужской пол;
- пожилой возраст.

Следовательно, основными причинами повреждения эндотелия являются факторы риска атеросклероза, которые реализуют свое повреждающее действие через усиление процессов оксидантного стресса. ЭД является начальным этапом в патогенезе атеросклероза. In vitro установлено снижение продукции NO в клетках эндотелия при гиперхолестеролемии, что обусловливает свободнорадикальное повреждение клеточных мембран. Окисленные липопротеины низкой плотности усиливают экспрессию молекул адгезии на поверхности эндотелиальных клеток, приводя к моноцитарной инфильтрации субэндотелия.

При ЭД нарушается баланс между гуморальными факторами, оказывающими защитное действие (NO, ПГН), и факторами, повреждающими стенку сосуда (ЭТ-1, тромбоксан А 2 , супероксиданион). Одними из наиболее существенных звеньев, повреждающихся в эндотелии при атеросклерозе, являются нарушение в системе NO и угнетение NOS под влиянием повышенного уровня холестерола и липопротеинов низкой плотности. Развившаяся при этом ЭД обусловливает вазоконстрикцию, повышенный клеточный рост, пролиферацию гладкомышечных клеток, накопление в них липидов, адгезию тромбоцитов крови, тромбообразование в сосудах и агрегацию. ЭТ-1 играет важную роль в процессе дестабилизации атеросклеротической бляшки, что подтверждается результатами обследования больных с нестабильной стенокардией и острым инфарктом миокарда (ИМ). В исследовании отмечено наиболее тяжелое течение острого ИМ при снижении уровня NO (на основании определения конечных продуктов метаболизма NO — нитритов и нитратов) с частым развитием острой левожелудочковой недостаточности, нарушениями ритма и ормированием хронической аневризмы левого желудочка сердца.

В настоящее время ЭД рассматривают в качестве основного механизма формирования АГ. При АГ одним из главных факторов развития ЭД является гемодинамический, который ухудшает эндотелийзависимое расслабление вследствие уменьшения синтеза NO при сохраненной или увеличенной продукции вазоконстрикторов (ЭТ-1, ангиотензина II), ускоренной его деградации и изменении цитоархитектоники сосудов. Так, уровень ЭТ-1 в плазме крови у больных с АГ уже на начальных стадиях заболевания достоверно превышает таковой у здоровых лиц. Наибольшее значение в уменьшении выраженности эндотелийзависимой вазодилатации (ЭЗВД) придают внутриклеточному оксидантному стрессу, так как свободнорадикальное окисление резко снижает продукцию NO эндотелиоцитами. С ЭД, препятствующей нормальной регуляции мозгового кровообращения, у больных с АГ также связывают высокий риск цереброваскулярных осложнений, следствием чего являются энцефалопатия, транзиторные ишемические атаки и ишемический инсульт.

Среди известных механизмов участия ЭД в патогенезе ХСН выделяют следующие:

1) повышение активности эндотелиального АТФ, сопровождающегося увеличением синтеза ангиотензина II;
2) подавление экспрессии эндотелиальной NOS и снижение синтеза NO, обусловленные:

Хроническим снижением кровотока;
- повышением уровня провоспалительных цитокинов и фактора некроза опухоли, подавляющих синтез NO;
- повышением концентрации свободных R(-), инактивирующих ЭФР-NO;
- повышением уровня циклооксигеназозависимых эндотелиальных факторов констрикции, препятствующих дилатирующему влиянию ЭФР-NO;
- снижением чувствительности и регулирующего влияния мускариновых рецепторов;

3) повышение уровня ЭТ-1, оказывающего вазоконстрикторное и пролиферативное действие.

NO контролирует такие легочные функции, как активность макрофагов, бронхоконстрикция и дилатация легочных артерий. У пациентов с ЛГ снижается уровень NO в легких, одной из причин которого является нарушение метаболизма L-аргинина. Так, у больных с идиопатической ЛГ отмечают снижение уровня L-аргинина наряду с повышением активности аргиназы. Нарушенный метаболизм асимметричного диметиларгинина (АДМА) в легких может инициировать, стимулировать или поддерживать течение хронических заболеваний легких, в том числе артериальной ЛГ. Повышенный уровень АДМА отмечают у пациентов с идиопатической ЛГ, хронической тромбоэмболической ЛГ и ЛГ при системном склерозе. В настоящее время активно изучают роль NO также в патогенезе легочных гипертензивных кризов. Усиленный синтез NO является адаптивной реакцией, противодействующей чрезмерному повышению давления в легочной артерии в момент острой вазоконстрикции.

В 1998 г. были сформированы теоретические основы для нового направления фундаментальных и клинических исследований по изучению ЭД в патогенезе АГ и других ССЗ и способах эффективной ее коррекции.

Принципы лечения дисфункции эндотелия

Поскольку патологические изменения функции эндотелия являются независимым предиктором неблагоприятного прогноза большинства ССЗ, эндотелий представляется идеальной мишенью для терапии. Цель терапии при ЭД — устранение парадоксальной вазоконстрикции и с помощью повышенной доступности NO в стенке сосудов создание защитной среды в отношении факторов, приводящих к ССЗ. Основной задачей является улучшение доступности эндогенного NO благодаря стимуляции NOS или ингибированию распада.

Немедикаментозные методы лечения

В экспериментальных исследованиях установлено, что потребление продуктов с высоким содержанием липидов приводит к развитию АГ за счет повышенного образования свободных радикалов кислорода, инактивирующих NO, что диктует необходимость ограничения жиров. Большое потребление соли подавляет действие NO в периферических резистивных сосудах. Физические упражнения повышают уровень NO у здоровых лиц и у пациентов с ССЗ, поэтому известные рекомендации в отношении уменьшения потребления соли и данные о пользе физических нагрузок при АГ и ИБС находят свое еще одно теоретическое обоснование. Считается, что положительный эффект на ЭД может оказывать применение антиоксидантов (витамины С и Е). Назначение витамина С в дозе 2 г пациентам с ИБС способствовало значительному кратковременному уменьшению выраженности ЭЗВД, что объяснялось захватом радикалов кислорода витамином С и, таким образом, повышением доступности NO.

Медикаментозная терапия

  1. Нитраты . Для терапевтического воздействия на коронарный тонус давно применяют нитраты, способные независимо от функционального состояния эндотелия отдавать NO стенке сосудов. Однако несмотря на эффективность в отношении расширения сосудов и уменьшение выраженности миокардиальной ишемии, применение препаратов этой группы не приводит к длительному улучшению эндотелиальной регуляции коронарных сосудов (ритмичность изменений тонуса сосудов, которая управляется с помощью эндогенного NO, не поддается стимуляции экзогенно введенному NO).
  2. Ингибиторы ангиотензинпревращающего фермента (АПФ) и ингибиторы рецепторов ангиотензина II. Роль ренин-ангиотензин-альдостероновой системы (РАС) в отношении ЭД главным образом связана с вазоконстрикторной эффективностью ангиотензина II. Основной локализацией АПФ являются мембраны эндотелиальных клеток сосудистой стенки, в которых находится 90% всего объема АПФ. Именно кровеносные сосуды — основное место превращения неактивного ангиотензина I в ангиотензин II. Основными блокаторами РАС являются ингибиторы АПФ. Кроме того, препараты этой группы проявляют дополнительные вазодилатирующие свойства вследствие их способности блокировать деградацию брадикинина и повышать его уровень в крови, что способствует экспрессии генов эндотелиальной NOS, повышению синтеза NO и уменьшению его разрушения.
  3. Диуретики . Существуют данные, доказывающие, что индапамид обладает эффектами, позволяющими, помимо диуретического действия, оказывать прямое вазодилатирующее влияние за счет антиоксидантных свойств, повышения биодоступности NO и уменьшения его разрушения.
  4. Антагонисты кальция. Блокирование кальциевых каналов уменьшает прессорный эффект важнейшего вазоконстриктора ЭТ-1, не влияя прямо на NO. Кроме того, препараты этой группы снижают концентрацию внутриклеточного кальция, что стимулирует секрецию NO и обусловливает вазодилатацию. Одновременно уменьшаются агрегация тромбоцитов и экспрессия молекул адгезии, а также подавляется активация макрофагов.
  5. Статины . Поскольку ЭД является фактором, приводящим к развитию атеросклероза, при заболеваниях, ассоциированных с ним, существует необходимость коррекции нарушенных функций эндотелия. Эффекты статинов связаны со снижением уровня холестерола, угнетением его локального синтеза, торможением пролиферации гладкомышечных клеток, активацией синтеза NO, что способствует стабилизации и предотвращению дестабилизации атеросклеротической бляшки, а также снижению вероятности возникновения спастических реакций. Это подтверждено в многочисленных клинических исследованиях.
  6. L -аргинин. Аргинин — условно незаменимая аминокислота. Среднесуточная потребность в L-аргинине составляет 5,4 г. Он является необходимым предшественником для синтеза белков и таких биологически важных молекул, как орнитин, пролин, полиамины, креатин и агматин. Однако главная роль аргинина в организме человека состоит в том, что он является субстратом для синтеза NO. Поступивший с пищей L-аргинин всасывается в тонком кишечнике и поступает в печень, где основное его количество утилизируется в орнитиновом цикле. Остающаяся часть L-аргинина используется ка к субстрат для продукции NO.

Эндотелийзависимые механизмы L -аргинина:

Участие в синтезе NO;
- уменьшение адгезии лейкоцитов к эндотелию;
- уменьшение агрегации тромбоцитов;
- снижение уровня ЭТ в крови;
- повышение эластичности артерий;
- восстановление ЭЗВД.

Следует отметить, что система синтеза и высвобождения NO эндотелием обладает значительными резервными возможностями, однако потребность в постоянном стимулировании его синтеза приводит к истощению субстрата NO — L-аргинина, восполнить который призван новый класс эндотелиопротекторов — донаторов NO. До недавнего времени отдельного класса эндотелиопротекторных препаратов не существовало, в качестве средств, способных корригировать ЭД, рассматривали лекарственные препараты других классов, обладающих подобными плейотропными эффектами.

Клинические эффекты L-аргинина как донатора N O . Имеющиеся данные указывают на то, что эффект L-apгининa зависит от его концентрации в плазме крови. При приеме L-apгининa внутрь его эффект связан с улучшением ЭЗВД. L-apгинин снижает агрегацию тромбоцитов и уменьшает адгезию моноцитов. При повышении концентрации L-apгининa в крови, которое достигают путем в/в его введения, проявляются эффекты, не связанные с продукцией NO, а высокий уровень L-apгининa в плазме крови приводит к неспецифической дилатации.

Влияние на гиперхолестеролемию. В настоящее время существуют данные доказательной медицины об улучшении эндотелиальной функции у больных с гиперхолестеролемией после приема L-apгининa, подтвержденные в двойном слепом плацебо-контролируемом исследовании.

Под влиянием перорального приема L-aprининa у больных со стенокардией повышается толерантность к физической нагрузке по данным пробы с 6-минутной ходьбой и при велоэргометрической нагрузке. Аналогичные данные получены при кратковременном применении L-apгининa у пациентов с хронической ИБС. После инфузии 150 мкмоль/л L-aprининa у пациентов с ИБС отмечено увеличение диаметра просвета сосуда в стенозированном сегменте на 3-24%. Применение раствора аргинина для перорального приема у больных со стабильной стенокардией II-III функционального класса (по 15 мл 2 раза в сутки в течение 2 мес) дополнительно к традиционной терапии способствовало достоверному увеличению выраженности ЭЗВД, повышению толерантности к физической нагрузке и улучшению качества жизни. У больных с АГ доказан положительный эффект при добавлении к стандартной терапии L-apгининa в дозе 6 г/сут. Прием препарата в дозе 12 г/ сут способствует снижению уровня диастолического артериального давления. В рандомизированном двойном слепом плацебо-контролируемом исследовании доказано позитивное влияние L-apгининa на гемодинамику и способность к выполнению физической нагрузки у пациентов с артериальной ЛГ, принимавших препарат перорально (по 5 г на 10 кг массы тела 3 раза в сутки). Установлено значительное повышение концентрации L-цитpyллинa в плазме крови таких больных, указывающее на усиление продукции NO, а также снижение на 9% среднего легочного артериального давления. При ХСН прием L-apгининa в дозе 8 г/сут на протяжении 4 нед способствовал повышению толерантности к физической нагрузке и улучшению ацетилхолинзависимой вазодилатации лучевой артерии.

В 2009 г. V. Bai еt аl. представили результаты метаанализа 13 рандомизированных исследований, выполненных в целях изучения эффекта перорального приема L-apгининa на функциональное состояние эндотелия. В этих исследованиях изучали эффект L-apгининa в дозе 3-24 г/сут при гиперхолестеролемии, стабильной стенокардии, заболеваниях периферических артерий и ХСН (длительность лечения — от 3 дней до 6 мес). Метанализ показал, что пероральный прием L-apгининa даже короткими курсами существенно увеличивает выраженность ЭЗВД плечевой артерии по сравнению с показателем при приеме плацебо, что свидетельствует об улучшении функции эндотелия.

Таким образом, результаты многочисленных исследований, проведенных на протяжении последних лет, свидетельствуют о возможности эффективного и безопасного применения L-аргинина как активного донатора NO с целью устранения ЭД в при ССЗ.

Коноплева Л.Ф.

Эндотелий - это слой уплощенных клеток мезенхимного происхождения, выстилающий стенки кровеносных и лимфатических сосудов и капилляров, обеспечивающий процессы обмена между кровью и тканями. Представляет собой непрерывную мембрану, состоящую из слоя эндотелиальных клеток, связанных межклеточным «цементом». Эндотелий кровеносных капилляров некоторых органов прерывается благодаря наличию субмикроскопических внутриклеточных «пор» (в почках, эндокринных железах, кишечнике) или широких межклеточных щелей (в печени, селезенке, костном мозге).


Плоскостный препарат внутренней оболочки артерии мышечного типа: 1 - клетки эндотелия; 2 - клетки подэндотелиального слоя; 3 - границы между эндотелиальными клетками (по Щелкунову).

Эндотелий [от греч. endon - внутри + (эпи)телий] - слой уплощенных клеток мезенхимного происхождения, выстилающий стенки кровеносных и лимфатических сосудов. В эмбриогенезе эндотелий впервые возникает в результате особой дифференцировки клеток мезенхимы, образующих замкнутый однослойный пласт клеток в виде кровяных островков, располагающихся в стенке желточного мешка и хорионе на 2-3-й неделе внутриутробного развития. Большинство авторов считает эндотелий продуктом особо дифференцированных клеток мезенхимы. Некоторые авторы относят эндотелий к своеобразному высокоспецифическому типу эпителиальных тканей (ангиодермальному). Клетки эндотелия представляют собой тонкие пластинки, тесно прилегающие друг к другу и образующие сплошной однослойный пласт (рис.). Длина клеток эндотелия от 5 мк до 175 мк, толщина в околоядерных участках от 200 Å до 1-2 мк. Извилистые границы клеток хорошо импрегнируются азотнокислым серебром. Полигональная форма клеток разнообразна, зависит от размера сосуда и степени его растяжения. Ядра клеток эндотелия овальной формы, длинным диаметром располагаются вдоль длинника сосуда.

Клетки эндотелия чаще содержат одно ядро, иногда 2-3, встречаются симпласты с 10 и более ядрами. В клетках эндотелия обнаружены пиноцитозные пузырьки диаметром 500-1000 Å, располагающиеся около наружной и внутренней поверхности. На поверхности эндотелия, обращенной к току крови, расположены субмикроскопические ворсинки. В цитоплазме эндотелия выявлена эндоплазматическая сеть с многочисленными гранулами РНК на ее мембранах, мелкие митохондрии. Межклеточные промежутки шириной в 100 Å межклеточного цемента не содержат. Наблюдается чешуйчатое перекрытие двух соседних клеток эндотелия. Микропоры диаметром 300-400 Å обнаружены в эндотелии капилляров клубочков почки, ворсин кишечника, эндокринных желез. Эндотелий кровеносных капилляров окружен базальной мембраной, отсутствующей в эндотелии лимфатических капилляров. В эндотелии выявлены гликоген, витамин С, щелочная фосфатаза. Наиболее дифференцирован эндотелий эндокарда и крупных сосудов, менее - эндотелий капилляров. Клетки эндотелия делятся путем митоза и амитоза. При репаративной регенерации восстановление эндотелия происходит путем митотического деления его клеток на краю раны и наползания их на поврежденную поверхность. Восстановление эндотелия также совершается из мало дифференцированных мезенхимных элементов, расположенных в субэндотелиальном слое. Новообразование капилляров происходит благодаря слиянию почкообразных выростов эндотелия друг с другом. Эндотелий, выстилающий синусоидные капилляры печени, костного мозга, селезенки и синусы лимфатических узлов, обладает ярко выраженной способностью к накоплению чужеродных коллоидов из крови и лимфы. Этот эндотелий относится к элементам ретикулоэндотелиальной системы (см.). Через эндотелий совершается обмен веществ между кровью (или лимфой) и тканевой жидкостью.

"Каждый человек надеется прожить долго, но никто не желает быть старым"
Джонатан Свифт


"Здоровье человека, равно как и его возраст, определяется состоянием его сосудов"
Медицинская аксиома

Эндотелий - однослойный пласт плоских клеток, выстилающих внутреннюю поверхность кровеносных и лимфатических сосудов, а также полостей сердца.

До недавнего времени считалось, что главная функция эндотелия – это полировка сосудов изнутри. И только в конце ХХ века, после присуждения в 1998 г. Нобелевской премии в области медицины, стало ясно, что основной причиной артериальной гипертензии (по народному – гипертонии) и других сердечно-сосудистых заболеваний является патология эндотелия.

Именно сейчас мы начинаем понимать, насколько важна роль этого органа. Да, именно органа, т.к. суммарный вес эндотелиальных клеток составляет 1,5-2 кг (как у печени!), а площадь его поверхности равна площади футбольного поля. Так каковы же функции эндотелия, этого огромного органа, распределенного по всей территории человеческого организма?

Выделяют 4 главные функции эндотелия:

  1. Регуляция тонуса сосудов – поддержка нормального артериального давления (АД); сужение сосудов, когда необходимо ограничить кровоток (например, на холоде, чтобы уменьшить теплопотерю), или их расширение – в активно работающем органе (мышце, поджелудочной железе при выработке пищеварительных ферментов, печени, головном мозге и т.п.), когда необходимо увеличить его кровоснабжение.
  2. Расширение и восстановление сети кровеносных сосудов. Эта функция эндотелия обеспечивает рост тканей и процессы заживления. Именно эндотелиальные клетки во всей сосудистой системе взрослого организма делятся, передвигаются и создают новые сосуды. К примеру, в каком-нибудь органе после воспаления часть тканей гибнет. Фагоциты съедают погибшие клетки, а в зоне поражения прорастающие клетки эндотелия образуют новые капилляры, через которые в ткань выходят стволовые клетки и частично восстанавливают поврежденный орган. Так восстанавливаются все клетки, в том числе и нервные. Нервные клетки восстанавливаются! Это доказанный факт. Проблема не в том, как мы болеем. Важнее то, как мы выздоравливаем! Старят не годы, но болезни!
  3. Регуляция свертывания крови. Эндотелий препятствует образованию тромбов и активирует процесс свертывания крови при повреждении сосуда.
  4. Эндотелий активно участвует в процессе местного воспаления – защитного механизма выживания. Если где-то в организме, кое-что чужеродное порой начинает поднимать голову, то именно эндотелий начинает в этом месте пропускать из крови через стенку сосуда в ткань защитные антитела и лейкоциты.

Эти функции эндотелий осуществляет, вырабатывая и выделяя большое количество разных биологически активных веществ. Но главной молекулой, вырабатываемой эндотелием, является NO – оксид азота. Именно открытие ключевой роли NO в регуляции сосудистого тонуса (другими словами – артериального давления) и вообще состояния сосудов, было удостоено Нобелевской премии в 1998 г. Исправно функционирующий эндотелий непрерывно вырабатывает NO, поддерживая нормальное давление в сосудах. Если количество NO снижается в результате уменьшения выработки клетками эндотелия или разложения его активными радикалами, сосуды не могут адекватно расширяться и доставлять больше питательных веществ и кислорода в активно работающие органы.

NO химически нестабилен – он существует всего несколько секунд. Поэтому NO действует только там, где выделяется. И если где-то функции эндотелия нарушены, то другие, здоровые, клетки эндотелия не могут компенсировать локальную эндотелиальную дисфункцию. Развивается локальная недостаточность кровоснабжения – ишемическая болезнь. Специфические клетки органов гибнут и замещаются соединительной тканью. Развивается старение органов, что рано или поздно проявляется болями в сердце, запорами, нарушением функции печени, поджелудочной железы, сетчатки глаза и т.п. Эти процессы протекают медленно, и, зачастую, незаметно для самого человека, однако резко ускоряются при любой болезни. Чем тяжелее протекает болезнь, тем массивнее повреждение тканей, тем, следовательно, больше придется восстанавливать.

Главной задачей медицины всегда было спасение жизни человеческой. Собственно, ради этого благородного дела мы поступали в мединститут и этому нас учили, и мы учили. Однако не менее важно обеспечить процесс восстановления после болезни, предоставить организму все необходимое. Если Вы думаете, что антибиотики или противовирусные препараты (я имею в виду те, которые действительно действуют на вирус) вылечивают человека от инфекции, то Вы ошибаетесь. Эти препараты останавливают прогрессивное размножение бактерий и вирусов. А излечение, т.е. уничтожение нежизнеспособного и восстановление того, что было, осуществляется клетками иммунной системы, клетками эндотелия и стволовыми клетками!

Чем лучше процесс будет обеспечен всем необходимым, тем полнее произойдет восстановление – в первую очередь кровоснабжения пораженной части органа. Именно для этого и создан препарат ЛонгаДНК. В его составе L-аргинин – источник NO, витамины, обеспечивающие обмен веществ внутри делящейся клетки, ДНК, необходимая для полноценного процесса деления клеток.

Что такое L-аргинин и ДНК и как они действуют:

L-аргинин – аминокислота, основной источник для образования оксида азота в клетках эндотелия сосудов, нервных клетках и макрофагах. NO играет главную роль в процессе расслабления гладкой мышцы сосудов, что приводит к снижению артериального давления, препятствует образованию тромбов. Огромное значение NO имеет для нормального функционирования нервной и иммунной систем.

На сегодняшний день экспериментально и клинически доказаны следующие эффекты L-аргинина:

  • Один из самых эффективных стимуляторов продукции гормона роста, позволяет поддерживать его концентрацию на верхних границах нормы, что способствует улучшению настроения, делает человека более активным, инициативным и выносливым. Многие геронтологи объясняют феномен долгожительства повышенным уровнем гомона роста у долгожителей.
  • Увеличивает скорость восстановления поврежденных тканей - ран, растяжений сухожилий, переломов костей.
  • Увеличивает мышечную и уменьшает жировую массу тела, эффективно помогая похудеть.
  • Эффективно усиливает выработку сперматозоидов, используется для лечения бесплодия у мужчин.
  • Играет существенную роль в процессах запоминания новой информации.
  • Является гепатопротектором – защитником, улучшающим функции печени.
  • Стимулирует активность макрофагов - клеток, защищающих организм от агрессии чужеродных бактерий.

ДНК – дезоксирибонуклеиновая кислота – источник нуклеотидов для синтеза собственной ДНК в активно размножающихся клетках (эпителий желудочно-кишечного тракта, клетки крови, клетки эндотелия сосудов):

  • Мощно стимулирует клеточную регенерацию и восстановительные процессы, ускоряет заживление ран.
  • Обладает выраженным положительным влиянием на иммунную систему, усиливает фагоцитоз и местный иммунитет, за счет чего резко повышает устойчивость и невосприимчивость организма к инфекциям.
  • Восстанавливает и усиливает адаптационные возможности органов, тканей и организма человека в целом.

Конечно, у каждого человека в клетке собирается его собственная, уникальная ДНК, ее уникальность обеспечивается последовательностью нуклеотидов, и, если чего-то, совсем чуть-чуть - пары нуклеотидов, не хватит, или из-за нехватки одного из витаминов какой-нибудь элемент будет собран неправильно – вся работа насмарку! Дефектная клетка будет уничтожена! Для этого в организме существует специальный надзорный отдел иммунной системы. Вот для того, чтобы выздоровление проходило максимально эффективно, чтобы замедлить процесс старения, и создана ЛонгаДНК. ЛонгаДНК – это пища для эндотелия.