Каскад свертывания крови схема. Свертывание и свертываемость крови: понятие, показатели, анализы и нормы

Каскад свертывания крови схема. Свертывание и свертываемость крови: понятие, показатели, анализы и нормы

  • Введение

    Современные представления о системе регуляции агрегантного состояния крови позволяют выделить основные механизмы её деятельности:

    • Механизмы гемостаза (их несколько) обеспечивают остановку кровотечения.
    • Механизмы антисвёртывания поддерживают жидкое состояние крови.
    • Механизмы фибринолиза обеспечивают растворение тромба (кровяного сгустка) и восстановление просвета сосуда (реканализацию).

    В обычном состоянии слегка преобладают противосвёртывающие механизмы, однако при необходимости предотвратить кровопотерю физиологический баланс быстро смещается в сторону прокоагулянтов. Если этого не происходит, развивается повышенная кровоточивость (геморрагические диатезы), преобладание прокоагулянтной активности крови чревато развитием тромбозов и эмболий. Выдающийся немецкий патолог Рудольф Вирхов выделил три группы причин, ведущих к развитию тромбоза (классическая триада Вирхова):

    • Повреждение сосудистой стенки.
    • Изменение состава крови.
    • Замедление кровотока (стаз).

    В структуре артериальных тромбозов преобладает первая причина (атеросклероз); замедление кровотока и преобладание прокоагулянтных факторов – основные причины венозных тромбозов.

    Различают два механизма гемостаза:

    • Сосудисто-тромбоцитарный (микроциркуляторный, первичный).
    • Коагуляционный (вторичный, свёртывание крови).

    Сосудисто-тромбоцитарный механизм гемостаза обеспечивает остановку кровотечения в мельчайших сосудах (в сосудах микроциркуляторного русла), где имеются низкое кровяное давление и малый просвет сосудов (до 100 мкм). В них остановка кровотечения может произойти за счёт:

    • Сокращения стенок сосудов.
    • Образования тромбоцитарной пробки.
    • Сочетания того и другого.

    Коагуляционный гемостаз обеспечивает остановку кровотечения в более крупных сосудах (артериях и венах). В них остановка кровотечения осуществляется за счёт свёртывания крови (гемокоагуляции).

    Полноценная гемостатическая функция возможна только при условии тесного взаимодействия сосудисто-тромбоцитарного и гемокоагуляционного механизмов гемостаза. Тромбоцитарные факторы принимают активное участие в коагуляционном гемостазе, обеспечивают конечный этап формирования полноценной гемостатической пробки – ретракцию кровяного сгустка. В то же время плазменные факторы непосредственно влияют на агрегацию тромбоцитов. При ранениях как мелких, так и крупных сосудов происходит образование тромбоцитарной пробки с последующим свёртыванием крови, организацией фибринового сгустка, а затем – восстановление просвета сосудов (реканализация путём фибринолиза).

    Реакция на повреждение сосуда зависит от разнообразных процессов взаимодействия между сосудистой стенкой, циркулирующими тромбоцитами, факторами свёртывания крови, их ингибиторами и фибринолитической системой. Гемостатический процесс модифицируется посредством положительной и отрицательной обратной связи, которая поддерживает стимуляцию констрикции сосудистой стенки и образование комплексов тромбоциты-фибрин, а также растворение фибрина и релаксацию сосудов, что позволяет вернуться к нормальному состоянию.

    Для того чтобы кровоток в обычном состоянии не нарушался, а при необходимости наступало эффективное свёртывание крови, необходимо поддержание равновесия между факторами плазмы, тромбоцитов и тканей, способствующими свёртыванию и тормозящими его. Если это равновесие нарушается, возникает либо кровотечение (геморрагические диатезы), либо повышенное тромбообразование (тромбозы).

  • Сосудисто-тромбоцитарный гемостаз

    У здорового человека кровотечение из мелких сосудов при их ранении останавливается за 1-3 минуты (так называемое время кровотечения). Этот первичный гемостаз почти целиком обусловлен сужением сосудов и их механической закупоркой агрегатами тромбоцитов – «белым тромбом» (рис. 1).

    Рисунок 1. Сосудисто-тромбоцитарный гемостаз. 1 – повреждение эндотелия; 2 – адгезия тромбоцитов; 3 – активация тромбоцитов, выделение биологически активных веществ из их гранул и образование медиаторов – производных арахидоновой кислоты; 4 – изменение формы тромбоцитов; 5 – необратимая агрегация тромбоцитов с последующим формированием тромба. ФВ – фактор Виллебранда, ТФР – тромбоцитарный фактор роста, TXA 2 – тромбоксан А 2 , АДФ – аденозиндифосфат, ФАТ – фактор активации тромбоцитов. Пояснения в тексте .

    Тромбоциты (кровяные пластинки, нормальное содержание в крови 170-400х10 9 /л) представляют собой плоские безъядерные клетки неправильной округлой формы диаметром 1-4 мкм. Кровяные пластинки образуются в красном костном мозге путём отщепления участков цитоплазмы от гигантских клеток – мегакариоцитов; из каждой такой клетки может возникнуть до 1000 тромбоцитов. Тромбоциты циркулируют в крови в течение 5-11 дней и затем разрушаются в селезёнке.

    В крови тромбоциты пребывают в неактивированном состоянии. Их активация наступает в результате контакта с активирующей поверхностью и действия некоторых факторов свёртывания. Активированные тромбоциты выделяют ряд веществ, необходимых для гемостаза.

    • Клиническое значение нарушений в сосудисто-тромбоцитарном звене гемостаза

      При уменьшении количества тромбоцитов (тромбоцитопении) или нарушении их структуры (тромбоцитопатии) возможно развитие геморрагического синдрома с петехиально-пятнистым типом кровоточивости. Тромбоцитоз (увеличение содержания тромбоцитов) предрасполагает к гиперкоагуляции и тромбозам. К методам оценки состояния сосудисто-тромбоцитарного гемостаза относят определение резистентности (ломкости) капилляров (манжеточная проба Румпель-Лееде-Кончаловского, симптомы жгута и щипка), время кровотечения, подсчёт числа тромбоцитов, оценку ретракции сгустка крови, определение ретенции (адгезивности) тромбоцитов, исследование агрегации тромбоцитов.

      К агрегации тромбоцитов даже в отсутствии внешних повреждений могут приводить дефекты эндотелиальной оболочки сосудов. С целью предупреждения тромбозов назначают препараты, подавляющие агрегацию тромбоцитов - антиагреганты. Ацетилсалициловая кислота (аспирин) селективно и необратимо ацетилирует фермент циклооксигеназу (ЦОГ), катализирующую первый этап биосинтеза простаноидов из арахидоновой кислоты. В невысоких дозах препарат влияет преимущественно на изоформу ЦОГ-1. В результате в циркулирующих в крови тромбоцитах прекращается образование тромбоксана A 2 , обладающего проагрегантным и сосудосуживающим действием. Метаболиты производных тиенопиридина (клопидогрел, тиклопидин) необратимо модифицируют рецепторы 2PY 12 на мембране тромбоцитов, в результате блокируется связь АДФ с его рецептором на мембране тромбоцита, что приводит к угнетению агрегации тромбоцитов. Дипиридамол угнетает фермент фосфодиэстеразу в тромбоцитах, что приводит к накоплению в тромбоцитах цАМФ, обладающего антиагрегантным действием. Блокаторы гликопротеинов IIb/IIIa тромбоцитов (абциксимаб, тирофибан и эптифибатид) воздействуют на конечную стадию агрегации, блокируя участок взаимодействия гликопротеинов IIb/IIIa на поверхности тромбоцитов с фибриногеном и другими адгезивными молекулами.

      В настоящее время проходят клинические испытания новых антиагрегантов (тикагрелор, прасугрел).

      В качестве местного кровоостанавливающего средства используется губка гемостатическая коллагеновая, усиливающая адгезию и активацию тромбоцитов, а также запускающая коагуляционный гемостаз по внутреннему пути.

  • Коагуляционный гемостаз
    • Общие положения

      После того как образуется тромбоцитарный сгусток, степень сужения поверхностных сосудов уменьшается, что могло бы привести к вымыванию сгустка и возобновлению кровотечения. Однако к этому времени уже набирают достаточную силу процессы коагуляции фибрина в ходе вторичного гемостаза, обеспечивающего плотную закупорку повреждённых сосудов тромбом («красным тромбом»), содержащим не только тромбоциты, но и другие клетки крови, в частности эритроциты (рис. 9).

      Рисунок 9. Красный тромб – эритроциты в трёхмерной фибриновой сети. (источник – сайт www.britannica.com).

      Постоянная гемостатическая пробка формируется при образовании тромбина посредством активации свёртывания крови. Тромбин играет важную роль в возникновении, росте и локализации гемостатической пробки. Он вызывает необратимую агрегацию тромбоцитов (неразрывная связь коагуляционного и сосудисто-тромбоцитарного звеньев гемостаза) (рис. 8) и отложение фибрина на тромбоцитарных агрегатах, образующихся в месте сосудистой травмы. Фибрино-тромбоцитарная сеточка является структурным барьером, предотвращающим дальнейшее вытекание крови из сосуда, и инициирует процесс репарации ткани.

      Свёртывающая система крови – это фактически несколько взаимосвязанных реакции, протекающих при участии протеолитических ферментов. На каждой стадии данного биологического процесса профермент (неактивная форма фермента, предшественник, зимоген) превращается в соответствующую сериновую протеазу. Сериновые протеазы гидролизуют пептидные связи в активном центре, основу которого составляет аминокислота серин. Тринадцать таких белков (факторы свёртывания крови) составляют систему свёртывания (таблица 1; их принято обозначать римскими цифрами (например, ФVII – фактор VII), активированную форму обозначают прибавлением индекса «а» (ФVIIа – активированный фактор VIII). Из них семь активируются до сериновых протеаз (факторы XII, XI, IX, X, II, VII и прекалликреин), три являются кофакторами этих реакций (факторы V, VIII и высокомолекулярный кининоген ВМК), один – кофактор/рецептор (тканевой фактор, фактор III), ещё один – трасглутаминаза (фактор XIII) и, наконец, фибриноген (фактор I) является субстратом для образования фибрина, конечного продукта реакций свёртывания крови (таблица 1).

      Для пострибосомального карбоксилирования терминальных остатков глутаминовой кислоты факторов свёртывания II, VII, IX, X (витамин К-зависимые факторы), а также двух ингибиторов свёртывания (протеинов C (си) и S) необходим витамин К. В отсутствии витамина К (или на фоне приёма непрямых антикоагулянтов, например, варфарина) печень содержит лишь биологически неактивные белковые предшественники перечисленных факторов свёртывания. Витамин К – необходимый кофактор микросомальной ферментной системы, которая активирует эти предшественники, превращая их множественные N-концевые остатки глутаминовой кислоты в остатки γ -карбоксиглутаминовой кислоты. Появление последних в молекуле белка придёт ему способность связывать ионы кальция и взаимодействовать с мембранными фосфолипидами, что необходимо для активации указанных факторов. Активная форма витамина К – восстановленный гидрохинон, который в присутствии O 2 , CO 2 и микросомальной карбоксилазы превращается в 2,3-эпоксид с одновременным γ-карбоксилированием белков. Для продолжения реакций γ –карбоксилирования и синтеза биологически-активных белков витамин К опять должен восстановиться в гидрохинон. Под действием витамин-К-эпоксидредуктазы (которую ингибируют терапевтические дозы варфарина) из 2,3-эпоксида вновь образуется гидрохиноновая форма витамина К (рис. 13).

      Для осуществления многих реакций коагуляционного гемостаза необходимы ионы кальция (Ca ++ , фактор свёртывания IV, рис. 10). Для предотвращения преждевременного свёртывания крови in vitro при подготовке к выполнению ряда коагуляционных тестов к ней добавляют вещества, связывающие кальций (оксалаты натрия, калия или аммония, цитрат натрия, хелатообразующее соединение этилендиаминтетраацетат (ЭДТА)).

      Таблица 1. Факторы свёртывания крови (а – активная форма) .

      Фактор Название Наиболее важное место образования T ½ (период полусуществования) Средняя концентрация в плазме, мкмоль/мл Свойства и функции Синдром недостаточности
      Название Причины
      I Фибриноген Печень 4-5 дней 8,8 Растворимый белок, предшественник фибриногена Афибриногенемия, недостаточность фибриногена Наследование по аутосомно-рецессивному типу (хромосома 4); коагулопатия потребления, поражение печёночной паренхимы.
      II Протромбин 3 дня 1,4 α 1 -глобулин, профермент тромбина (протеаза) Гипопротромбинемия Наследование по аутосомно-рецессивному типу (хромосома 11); поражения печени, недостаточность витамина К, коагулопатия потребления.
      III Тканевой тромбопластин (тканевой фактор) Клетки тканей Фосфолипропротеин; активен во внешней системе свёртывания
      IV Кальций (Са ++) 2500 Необходим для активации большинства факторов свёртывания
      V Проакцелерин, АК-глобулин Печень 12-15 ч. 0,03 Растворимый b-глобулин, связывается с мембраной тромбоцитов; активируется фактором IIa и Са ++ ; Va служит компонентом активатора протромбина Парагемофилия, гипопроакцелеринемия Наследование по аутосомно-рецессивному типу (хромосома 1); поражения печени.
      VI Изъят из классификации (активный фактор V)
      VII Проконвертин Печень (витамин К-зависимый синтез) 4-7 ч. 0,03 α 1 -глобулин, профермент (протеаза); фактор VIIа вместе с фактором III и Са ++ активирует фактор X во внешней системе Гипопроконвертинемия Наследование по аутосомно-рецессивному типу (хромосома 13); недостаточность витамина К.
      VIII Антигемофильный глобулин Различные ткани, в т.ч. эндотелий синусоид печени 8-10 ч. b 2 -глобулин, образует комплекс с фактором Виллебранда; активируется фактором IIa и Са ++ ; фактор VIIIa служит кофактором в превращении фактора X в фактор Xa Гемофилия А (классическая гемофилия); синдром Виллебранда Наследование по рецессивному типу, сцепление с X-хромосомой (половой); Наследование обычно по аутосомно-доминантному типу.
      IX Фактор Кристмаса 24 часа 0,09 α 1 -глобулин, контакт-чувствительный профермент (протеаза); фактор IXа вместе с фактором пластинок 3, фактором VIIIa и Са ++ активирует фактор X dj внутренней системе Гемофилия B Наследование по рецессивному типу, сцепленное с X-хромосомой (половой).
      X Фактор Стюарта-Прауэра Печень Печень (витамин К-зависимый синтез) 2 дня 0,2 α 1 -глобулин, профермент (протеаза); фактор Xa служит компонентом активатора протромбина Недостаточность фактора X Наследование по аутосомноу-рецессивному типу (хромосома 13)
      XI Плазменный предшественник трмбопластина (ППТ) Печень 2-3 дня 0,03 γ-глобулин, контакт-чувствительный профермент (протеаза); фактор XIa вместе с Са ++ активирует фактор IX Недостаточность ППТ Наследование по аутосомно-рецессивному типу (хромосома 4); коагулопатия потребления.
      XII Фактор Хагемана Печень 1 день 0,45 b-глобулин, контакт-чувствительный профермент (протеаза) (изменяет форму при контакте с поверхностями); активируется калликреином, коллагеном и др.; активирует ПК, ВМК, фактор XI Синдром Хагемана (обычно не проявляется клинически) Наследование обычно по аутосомно-рецессивному типу (хромосома 5).
      XIII Фибрин-стабилизирующий фактор Печень, тромбоциты 8 дней 0,1 b-глобулин, профермент (трансамидаза); фактор XIIIa вызывает переплетение нитей фибрина Недостаточность фактора XIII Наследование по аутосомно-рецессивному типу (хромосомы 6, 1); коагулопатия потребления.
      Прекалликреин (ПК), фактор Флетчера Печень 0,34 b-глобулин, профермента (протеаза); активируется фактором XIIa; калликреин способствует активации факторов XII и XI Наследование (хромосома 4)
      Высокомолекулярный кининоген (ВМК) (фактор Фитцжеральда, фактор Вильямса, фактор Фложека) Печень 0,5 α 1 -глобулин; способствует контактной активации факторов XII и XI Обычно клинически не проявляется Наследование (хромосома 3)

      Основы современной ферментной теории свёртывания крови были заложены в конце XIX – начале XX столетия профессором Тартуского (Дерптского) университета Александром-Адольфом Шмидтом (1877 г.) и уроженцем Санкт-Петербурга Паулом Моравитцем (1904 г.), а также в работе С. Мурашева о специфичности действия фибрин-ферментов (1904 г.). Основные этапы свёртывания крови, приведённые в схеме Моравитца, верны и поныне. Вне организма кровь свёртывается за несколько минут. Под действием «активатора протромбина» (тромбокиназы), белок плазмы протромбин превращается в тромбин. Последний вызывает ращепление растворённого в плазме фибриногена с образованием фибрина, волокна которого образуют основу тромба. В результате этого кровь превращается из жидкости в студенистую массу. С течением времени открывались всё новые и новые факторы свёртывания и в 1964 году двумя независимыми группами учёных (Davie EW, Ratnoff OD; Macfarlane RG) была предложена ставшая классической модель коагуляционного каскада (водопада), представленная во всех современных учебниках и руководствах. Эта теория подробно изложена ниже. Использование подобного рода схемы свёртывания крови оказалось удобным для правильного толкования комплекса лабораторных тестов (таких как АЧТВ, ПВ), применяющихся при диагностике различных геморрагических диатезов коагуляционного генеза (например, гемофилии А и B). Однако модель каскада не лишена недостатков, что послужило поводом для разработки альтернативной теории (Hoffman M, Monroe DM) – клеточной модели свёртывания крови (см. соответствующий раздел).

    • Модель коагуляционного каскада (водопада)

      Механизмы инициации свёртывания крови подразделяют на внешние и внутренние. Такое деление искусственно, поскольку оно не имеет места in vivo, но данный подход облегчает интерпретацию лабораторных тестов in vitro.

      Большинство факторов свёртывания циркулируют в крови в неактивной форме. Появление стимулятора коагуляции (триггера) приводит к запуску каскада реакций, завершающихся образованием фибрина (рис. 10). Триггер может быть эндогенным (внутри сосуда) или экзогенным (поступающим из тканей). Внутренний путь активации свёртывания крови определяется как коагуляция, инициируемая компонентами, полностью находящимися в пределах сосудистой системы. Когда процесс свёртывания начинается под действием фосфолипопротеинов, выделяемых из клеток повреждённых сосудов или соединительной ткани, говорят о внешней системе свёртывания крови. В результате запуска реакций системы гемостаза независимо от источника активации образуется фактор Xa, обеспечивающий превращение протромбина в тромбин, а последний катализирует образование фибрина из фибриногена. Таким образом, и внешний и внутренний пути замыкаются на единый – общий путь свёртывания крови.

      • Внутренний путь активации свёртывания крови

        Компонентами внутреннего пути являются факторы XII, XI, IX, XIII, кофакторы – высокомолекулярный кининоген (ВМК) и прекалликреин (ПК), а также их ингибиторы.

        Внутренний путь (рис. 10 п. 2) запускается при повреждении эндотелия, когда обнажается отрицательно заряженная поверхность (например, коллаген) в пределах сосудистой стенки. Контактируя с такой поверхностью, активируется ФXII (образуется ФXIIa). Фактор XIIa активирует ФXI и превращает прекалликреин (ПК) в калликреин, который активирует фактор XII (петля положительной обратной связи). Механизм взаимной активации ФXII и ПК отличается большей быстротой по сравнению с механизмом самоактивации ФXII, что обеспечивает многократное усиление системы активации. Фактор XI и ПК связываются с активирующей поверхностью посредством высокомолекулярного кининогена (ВМК). Без ВМК активации обоих проферментов не происходит. Связанный ВМК может расщепляться калликреином (К) или связанным с поверхностью ФXIIa и инициировать взаимную активацию систем ПК-ФXII.

        Фактор XIa активирует фактор IX. Фактор IX может также активироваться под действием комплекса ФVIIa/ФIII (перекрёст с каскадом внешнего пути), причём считается, что in vivo это доминирующий механизм. Активированный ФIXa требует наличия кальция и кофактора (ФVIII), для прикрепления к тромбоцитарному фосфолипиду (тромбоцитарному фактору 3 – см. раздел сосудисто-тромбоцитарный гемостаз) и превращения фактора X в фактор Xa (переход с внутреннего на общий путь). Фактор VIII действует в качестве мощного ускорителя завершающей ферментативной реакции.

        Фактор VIII, который также называют антигемофильным фактором, кодируется большим геном, расположенным на конце X-хромосомы. Он активируется под действием тромбина (основной активатор), а также факторов IXa и Xa. ФVIII циркулирует в крови, будучи связанным с фактором фон Виллебранда (ФВ) – большим гликопротеином, продуцируемым эндотелиальными клетками и мегакариоцитами (см. также раздел сосудисто-тромбоцитарный гемостаз). ФВ служит внутрисосудистым белком-носителем для ФVIII. Связывание ФВ с ФVIII стабилизирует молекулу ФVIII, увеличивает её период полусуществования внутри сосуда и способствует её транспорту к месту повреждения. Однако чтобы активированный фактор VIII мог проявить свою кофакторную активность, он должен отсоединиться от ФВ. Воздействие тромбина на комплекс ФVIII/ФВ приводит к отделению ФVIII от несущего протеина и расщеплению на тяжёлую и лёгкую цепи ФVIII, которые важны для коагулянтной активность ФVIII.

      • Общий путь свёртывания крови (образование тромбина и фибрина)

        Внешний и внутренний пути свёртывания крови замыкаются на активации ФX, с образования ФXa начинается общий путь (рис. 10 п. 3). Фактор Xa активирует ФV. Комплекс факторов Xa, Va, IV (Ca 2+) на фосфолипидной матрице (главным образом это тромбоцитарный фактор 3 – см. сосудисто-тромбоцитарный гемостаз) является протромбиназой, которая активирует протромбин (превращение ФII в ФIIa).

        Тромбин (ФIIa) представляет собой пептидазу, особенно эффективно расщепляющую аргиниловые связи. Под действием тромбина наступает частичный протеолиз молекулы фибриногена. Однако функции тромбина не ограничиваются влиянием на фибрин и фибриноген. Он стимулирует агрегацию тромбоцитов, активирует факторы V, VII, XI и XIII (положительная обратная связь), а также разрушает факторы V, VIII и XI (петля отрицательная обратной связи), активирует фибринолитическую систему, стимулирует эндотелиальные клетки и лейкоциты. Он также вызывает миграцию лейкоцитов и регулирует тонус сосудов. Наконец, стимулируя рост клеток, способствует репарации тканей.

        Тромбин вызывает гидролиз фибриногена до фибрина. Фибриноген (фактор I) представляет собой сложный гликопротеин, состоящий из трёх пар неидентичных полипептидных цепей. Тромбин прежде всего расщепляет аргинин-глициновые связи фибриногена с образованием двух пептидов (фибринопептид А и фибринопептид B) и мономеров фибрина. Эти мономеры образуют полимер, соединяясь бок в бок (фибрин I) и удерживаясь рядом водородными связями (растворимые фибрин-мономерные комплексы – РФМК). Последующий гидролиз этих комплексов при действии тромбина приводит к выделению фибринопептида B. Кроме того, тромбин активирует ФXIII, который в присутствии ионов кальция связывает боковые цепи полимеров (лизин с глутаминовыми остатками) изопептидными ковалентными связями. Между мономерами возникают многочисленные перекрёстные связи, создающие сеть взаимодействующих фибриновых волокон (фибрин II), весьма прочных и способных удерживать тромбоцитарную массу на месте травмы.

        Однако на этой стадии трёхмерная сеть волокон фибрина, которая удерживает в больших количествах клетки крови и кровяные пластинки, всё ещё относительно рыхлая. Свою окончательную форму она принимает после ретракции: через несколько часов волокна фибрина сжимаются и из него как бы выдавливается жидкость – сыворотка, т.е. лишённая фибриногена плазма. На месте сгустка остаётся плотный красный тромб, состоящий из сети волокон фибрина с захваченными ею клетками крови. В этом процессе участвуют тромбоциты. В них содержится тромбостенин – белок, сходный с актомиозином, способный сокращаться за счёт энергии АТФ. Благодаря ретракции сгусток становится более плотным и стягивает края раны, что облегчает её закрытие клетками соединительной ткани.

    • Регуляция системы свертывания крови

      Активация свёртывания крови in vivo модулируется рядом регуляторных механизмов, которые ограничивают реакции местом повреждения и предотвращают возникновение массивного внутрисосудистого тромбоза. К регулирующим факторам относят: кровоток и гемодилюцию, клиренс, осуществляемый печенью и ретикулоэндотелиальной системой (РЭС), протеолитическое действие тромбина (механизм отрицательной обратной связи), ингибиторы сериновых протеаз.

      При быстром кровотоке происходит разбавление активных сериновых протеаз и транспорт их в печень для утилизации. Кроме того, диспергируются и отсоединяются периферические тромбоциты от тромбоцитарных агрегатов, что ограничивает размер растущей гемостатической пробки.

      Растворимые активные сериновые протеазы инактивируются и удаляются из кровообращения гепатоцитами и ретикулоэндотелиальными клетками печени (купферовскими клетками) и других органов.

      Тромбин в качестве фактора, ограничивающего свёртывание, разрушает факторы XI, V, VIII, а также инициирует активацию фибринолитической системы посредством белка C, что приводит к растворению фибрина, в том числе за счёт стимуляции лейкоцитов (клеточный фибринолиз – см. раздел « фибринолиз »).

      • Ингибиторы сериновых протеаз

        Процесс свёртывания крови строго контролируется присутствующими в плазме белками (ингибиторами), которые ограничивают выраженность протеолитических реакций и обеспечивают защиту от тромбообразования (рис. 11). Главными ингибиторами факторов свёртывания крови являются антитромбин III (АТ III, гепариновый кофактор I), гепариновый кофактор II (ГК II), протеин «си» (PC) и протеин «эс» (PS), ингибитор пути тканевого фактора (ИПТФ), протеаза нексин-1 (ПН-1), C1-ингибитор, α 1 -антитрипсин (α 1 -АТ) и α 2 -макроглобулин (α 2 -М). Большинство этих ингибиторов, за исключением ИПТФ и α 2 -М, относятся к серпинам (СЕРиновых Протеаз ИНгибиторы).

        Антитромбин III (АТ III) является серпином и основным ингибитором тромбина, ФXa и ФIXa, он также инактивирует ФXIa и ФXIIa (рис. 11). Антитромбин III нейтрализует тромбин и другие сериновые протеазы посредством ковалентного связывания. Скорость нейтрализации сериновых протеаз антитромбином III в отсутствии гепарина (антикоагулянта) невелика и существенно увеличивается в его присутствии (в 1000 – 100000 раз). Гепарин представляет собой смесь полисульфатированных эфиров гликозаминогликанов; он синтезируется тучными клетками и гранулоцитами, его особенно много в печени, лёгких, сердце и мышцах, а также в тучных клетках и базофилах. В терапевтических целях вводят синтетический гепарин (нефракционированный гепарин, низкомолекулярные гепарины). Гепарин образует с АТ III комплекс, называемый антитромбином II (АТ II), повышая тем самым эффективность АТ III и подавляя образование и действие тромбина. Кроме того, гепарин служит активатором фибринолиза и поэтому способствует растворению сгустков крови. Значение АТ III, как основного модулятора гемостаза подтверждается наличием тенденции к тромбообразованию у лиц с врождённым или приобретённым дефицитом АТ III.

        Протеинс си (PC) – витамин К-зависимый белок, синтезируемый гепатоцитами. Циркулирует в крови в неактивной форме. Активируется небольшим количеством тромбина. Эта реакция значительно ускоряется тромбомодулином (ТМ) – поверхностным белком эндотелиальных клеток, который связывается с тромбином. Тромбин в комплексе с тромбомодулином становится антикоагулянтным белком, способным активировать сериновую протеазу – PC (петля отрицательной обратной связи). Активированный PC в присутствии своего кофактора – протеина S (PS) расщепляет и инактивирует ФVa и ФVIIIa (рис. 11). PC и PS являются важными модуляторами активации свёртывания крови и их врождённый дефицит связан со склонностью к тяжёлым тромботическим нарушениям. Клиническое значение PC доказывает повышенное тромбообразование (тромбофилия) у лиц с врождённой патологией ФV (Лейденская мутация – замена гуанина 1691 аденином, что приводит к замещению аргинина глутамином в позиции 506 аминокислотной последовательности белка). Такая патология ФV устраняет сайт, по которому происходит расщепление активированным протеином C, что мешает инактивации фактора V и способствует возникновению тромбоза.

        Активированный PC посредством механизма обратной связи подавляет продукцию эндотелиальными клетками ингибитора активатора плазминогена-1 (ИАП-1), оставляя без контроля тканевой активатор плазминогена (ТАП – см. разле фибринолиз). Это косвенно стимулирует фибринолитическую систему и усиливает антикоагулянтную активность активированного PC.

        α 1 -антитрипсин (α 1 -АТ) нейтрализует ФXIa и активированный PC.

        С1-ингибитор (С1-И) также является серпином и главным ингибитором сериновых ферментов контактной системы. Он нейтрализует 95% ФXIIa и более 50% всего калликреина, образующегося в крови. При дефиците С1-И возникает ангионевротический отёк. ФXIa инактивируется в основном α1-антитрипсином и АТ III.

        Гепариновый кофактор II (ГК II) – серпин, ингибирующий только тромбин в присутствии гепарина или дерматан-сульфата. ГК II находится преимущественно во внесосудистом пространстве, где локализуется дерматан-сульфат, и именно здесь может играть решающую роль в ингибировании тромбина. Тромбин способен стимулировать пролиферацию фибробластов и других клеток, хемотаксис моноцитов, облегчать адгезию нейтрофилов к эндотелиальным клеткам, ограничивать повреждение нервных клеток. Способность ГК II блокировать эту деятельность тромбина играет определённую роль в регулировании процессов заживления ран, воспаления или развития нервной ткани.

        Протеаза нексин-1 (ПН-1) – серпин, ещё один вторичный ингибитор тромбина, предотвращающий его связывание с клеточной поверхностью.

        Ингибитор пути тканевого фактора (ИПТФ) представляет собой куниновый ингибитор свёртывания (кунины гомологичны ингибитору панкреатического трипсина – апротинину). Синтезируется главным образом эндотелиальными клетками и в меньшей степени – мононуклеарами и гепатоцитами. ИПТФ связывается с ФXa, инактивируя его, а затем комплекс ИПТФ-ФXa инактивирует комплекс ТФ-ФVIIa (рис. 11). Нефракционированный гепарин, низкомолекулярные гепарины стимулируют выделение ИПТФ и усиливают его антикоагулянтную активность.

        Рисунок 11. Действие ингибиторов коагуляции. ФЛ – фосфолипиды. Пояснения в тексте .

    • Фибринолиз

      Конечная стадия в репаративном процессе после повреждения кровеносного сосуда происходит за счёт активации фибринолитической системы (фибринолиза), что приводит к растворению фибриновой пробки и началу восстановления сосудистой стенки.

      Растворение кровяного сгустка – такой же сложный процесс, как и его образование. В настоящее время считается, что даже в отсутствие повреждения сосудов постоянно происходит превращение небольшого количества фибриногена в фибрин. Это превращение уравновешивается непрерывно протекающим фибринолизом. Лишь в том случае, когда свёртывающая система дополнительно стимулируется в результате повреждения ткани, выработка фибрина в области повреждения начинает преобладать и наступает местное свёртывание.

      Существуют два главных компонента фибринолиза: фибринолитическая активность плазмы и клеточный фибринолиз.

      • Фибринолитическая система плазмы

        Фибринолитическая система плазмы (рис. 12) состоит из плазминогена (профермент), плазмина (фермент), активаторов плазминогена и соответствующих ингибиторов. Активация фибринолитической системы приводит к образованию плазмина – мощного протеолитического фермента, обладающего разнообразным действием in vivo.

        Предшественник плазмина (фибринолизина) – плазминоген (профибринолизин) представляет собой гликопротеин, продуцируемый печенью, эозинофилами и почками. Активация плазмина обеспечивается механизмами, аналогичными внешней и внутренней свёртывающим системам. Плазмин представляет собой сериновую протеазу. Тромболитическое действие плазмина обусловлено его сродством к фибрину. Плазмин отщепляет от фибрина путём гидролиза растворимые пептиды, которые тормозят действие тромбина (рис. 11) и, таким образом, препятствуют дополнительному образованию фибрина. Плазмин расщепляет также другие факторы свёртывания: фибриноген, факторы V, VII, VIII, IX, X, XI и XII, фактор Виллебранда и тромбоцитарые гликопротеины. Благодаря этому он не только обладает тромболитическим эффектом, но и снижает свёртываемость крови. Он также активирует компоненты каскада комплемента (C1, C3a, C3d, C5).

        Превращение плазминогена в плазмин катализируется активаторами плазминогена и строго регулируется различными ингибиторами. Последние инактивируют как плазмин, так и активаторы плазминогена.

        Активаторы плазминогена образуются или сосудистой стенкой (внутренняя активация), или тканями (внешняя активация). Внутренний путь активации включает активацию белков контактной фазы: ФXII, XI, ПК, ВМК и калликреина. Это важный путь активации плазминогена, но основной – через ткани (внешняя активация); он происходит в результате действия тканевого активатора плазминогена (ТАП), выделяемого эндотелиальными клетками. ТАП также продуцируется другими клетками: моноцитами, мегакариоцитами и мезотелиальными клетками.

        ТАП представляет собой сериновую протеазу, которая циркулирует в крови, образуя комплекс со своим ингибитором, и имеет высокое сродство к фибрину. Зависимость ТАП от фибрина ограничивает образование плазмина зоной аккумуляции фибрина. Как только небольшое количество ТАП и плазминогена соединилось с фибрином, каталическое действие ТАП на плазминоген многократно усиливается. Затем образовавшийся плазмин разлагает фибрин, обнажая новые лизиновые остатки, с которыми связывается другой активатор плазминогена (одноцепочечная урокиназа). Плазмин превращает эту урокиназу в иную форму – активную двуцепочечную, вызывая дальнейшую трансформацию плазминогена в плазмин и растворение фибрина.

        Одноцепочечная урокиназа выявляется в большом количестве в моче. Как и ТАП, она относится к сериновым протеазам. Основная функция этого фермента проявляется в тканях и заключается в разрушении внеклеточного матрикса, что способствует миграции клеток. Урокиназа продуцируется фибробластами, моноцитами/макрофагами и эндотелиальными клетками. В отличие от ТАП циркулирует в не связанной с ИАП форме. Она потенцирует действие ТАП, будучи введённой после (но не до) ТАП.

        Как ТАП, так и урокиназа синтезируются в настоящее время методами рекомбинантной ДНК и пспользуются в качестве лекарственны средств (рекомбинантный тканевой активатор плазминогена, урокиназа). Другими активаторами плазминогена (нефизиологическими) являются стрептокиназа (продуцируемая гемолитическим стрептококком), антистрептлаза (комплекс человеческого плазминогена и бактериальной стрептокиназы) и стафилокиназа (продуцируемая золотистым стафилококком) (рис. 12). Эти вещества используются в качестве фармакологических тромболитических средств, применяются для лечения острого тромбоза (например, при остром коронарном синдроме, ТЭЛА).

        Расщепление плазмином пептидных связей в фибрине и фибриногене приводит к образованию различных дериватов с меньшей молекулярной массой, а именно продуктов деградации фибрина (фибриногена) – ПДФ. Самый крупный дериват называется фрагментом X (икс), который ещё сохраняет аргинин-глициновые связи для дальнейшего действия, осуществляемого тромбином. Фрагмент Y (антитромбин) меньше, чем X, он задерживает полимеризацию фибрина, действуя как конкурентный ингибитор тромбина (рис. 11). Два других, меньших по размеру фрагмента, D и E, ингибируют агрегацию тромбоцитов.

        Плазмин в кровотоке (в жидкой фазе) быстро инактивируется естественно образующимися ингибиторами, но плазмини в фибриновом сгустке (гелевая фаза) защищён от действия ингибиторов и лизирует фибрин локально. Таким образом, в физиологических условиях фибринолиз ограничен зоной фибринообрвазония (гелевая фаза), то есть гемостатической пробкой. Однако при патологических состояниях фибринолиз может стать генерализованным, охватывая обе фазы плазминообразования (жидкую и гелевую), что приводит к литическому состоянию (фибринолитическое состояние, активный фибринолиз). Оно характеризуется образованием избыточного количества ПДФ в крови, а также проявляющимся клинически кровотечением.

      • Клиническое значение нарушений в коагуляционном звене гемостаза и фибринолитической системе

        Врождённое (см. табл. 1) или приобретённое уменьшение содержания или активности плазменных факторов свёртывания может сопровождаться повышенной кровоточивостью (геморрагические диатезы с гематомным типом кровоточивости, например гемофилия А, гемофилия B, афибриногенемия, гипокоагуляционная стадия синдрома диссеминированного внутрисосудистого свёртывания – ДВС, печёночно-клеточная недостаточность и др.; дефицит фактора Виллебранда приводит к развитию геморрагического синдрома со смешанным типом кровоточивости, т.к. ФВ участвует и в сосудисто-тромбоцитарном и в коагуляционном гемостазе). Избыточная активация коагуляционного гемостаза (например, в гиперкоагуляционную фазу ДВС), резистентность факторов свёртывания к соответствующим ингибиторам (например, Лейденская мутация фактора V) или дефицит ингибиторов (например, дефицит АТ III, дефицит PС) приводят к развитию тромбозов (наследственные и приобретённые тромбофилии).

        Избыточная активация фибринолитической системы (например, при наследственном дефиците α 2 -антиплазмина) сопровождается повышенной кровоточивостью, её недостаточность (например, при повышенном уровне ИАП-1) – тромбозами.

        В качестве антикоагулянтов в клинической практике применяются следующие лекарственные препараты: гепарины (нефракционированный гепарин – НФГ и низкомолекулярные гепарины – НМГ), фондапаринукс (взаимодействует с АТ III и селективно ингибирует ФXa), варфарин . Управлением по контролю за качеством пищевых продуктов и лекарственных средств (FDA) США разрешены к применению (по специальным показаниям (например, для лечения гепарининдуцированной тромбоцитопенической пурпуры) внутривенные препараты – прямые ингибиторы тромбина: липерудин, аргатробан, бивалирудин. Клинические испытания проходят пероральные ингибиторы фактора IIa (дабигатран) и фактора Xa (ривароксабан, апиксабан).

        Коллагеновая кровоостанавливающая губка способствует местному гемостазу за счёт активации тромбоцитов и факторов свёртывания контактной фазы (внутренний путь активации гемостаза).

        В клинике используются следующие основные методы исследования системы коагуляционного гемостаза и мониторинга терапии антикоагулянтами: тромбоэластография, определение времени свёртывания крови , времени рекальцификации плазмы, активированного частичного (парциального) тромбопластинового времени (АЧТВ или АПТВ) , протромбинового времени (ПВ), протромбинового индекса, международного нормализованного отношения (МНО) , тромбинового времени , анти-фактор Xa активности плазмы, . транексамовая кислота (циклокапрон). Апротинин (гордокс, контрикал, трасилол) – природный ингибитор протеаз, получаемый из бычьих лёгких. Он подавляет действие многих веществ, участвующих в воспалении, фибринолизе, образовании тромбина. К числу этих веществ относятся калликреин и плазмин.

    • Список литературы
      1. Agamemnon Despopoulos, Stefan Silbernagl. Color Atlas of Physiology 5th edition, completely revised and expanded. Thieme. Stuttgart - New York. 2003.
      2. Физиология человека: в 3-х томах. Т. 2. Пер. с англ./Под ред. Р. Шмидта и Г. Тевса. – 3-е изд. – М.: Мир, 2005. – 314 с., ил.
      3. Шиффман Ф. Дж. Патофизиология крови. Пер. с англ. – М. – Спб.: «Издательство БИНОМ» - «Невский диалект», 2000. – 448 с., ил.
      4. Физиология человека: Учебник/ Под. ред. В. М. Смирнова. – М.: Медицина, 2002. – 608 с.: ил.
      5. Физиология человека: Учебник/ В двух томах. Т. I./ В. М. Покровский, Г. Ф. Коротько, В. И. Кобрин и др.; Под. ред. В. М. Покровского, Г. Ф. Коротько. – М.: Медицина, 1997. – 448 с.: ил.
      6. Ройтберг Г. Е., Струтынский А. В. Лабораторная и инструментальная диагностика заболеваний внутренних органов – М.: ЗАО «Издательство БИНОМ», 1999 г. – 622 с.: ил.
      7. Руководство по кардиологии: Учебное пособие в 3 т. /Под ред. Г. И. Сторожакова, А. А. Горбанченкова. – М.: Гэотар-Медиа, 2008. – Т. 3.
      8. T Wajima1, GK Isbister, SB Duffull. A Comprehensive Model for the Humoral Coagulation Network in Humans. Clinical pharmacology & Therapeutic s, VOLUME 86, NUMBER 3, SEPTEMBER 2009., p. 290-298.
      9. Gregory Romney and Michael Glick. An Updated Concept of Coagulation With Clinical Implications. J Am Dent Assoc 2009;140;567-574.
      10. D. Green. Coagulation cascade. Hemodialysis International 2006; 10:S2–S4.
      11. Клиническая фармакология по Гудману и Гилману. Под общей ред. А. Г. Гилмана. Пер. с англ. под общей ред. к. м. н. Н. Н. Алипова. М., "Практика", 2006.
      12. Bauer KA. New Anticoagulants. Hematology Am Soc Hematol Educ Program. 2006:450-6
      13. Karthikeyan G, Eikelboom JW, Hirsh J. New oral anticoagulants: not quite there yet. Pol Arch Med Wewn. 2009 Jan-Feb;119(1-2):53-8.
      14. Руководство по гематологии в 3 т. Т. 3. Под ред. А. И. Воробьёва. 3-е изд. Перераб. и дополн. М.: Ньюдиамед: 2005. 416 с. С ил.
      15. Andrew K. Vine. Recent advances in hemostasis and thrombosis. RETINA, THE JOURNAL OF RETINAL AND VITREOUS DISEASES, 2009, VOLUME 29, NUMBER 1.
      16. Папаян Л. П. Современная модель гемостаза и механизм действия препарата Ново-Севен // Проблемы гематологии и переливания крови. Москва, 2004, №1. – с. 11-17.

Свертываемость крови должна быть нормальной, поэтому в основе гемостаза лежат равновесные процессы. Нельзя, чтобы наша ценная биологическая жидкость сворачивалась – это грозит серьезными, смертельно опасными, осложнениями (). Напротив, может обернуться неконтролируемым массивным кровотечением, что также способно повлечь гибель человека.

Сложнейшие механизмы и реакции, привлекая ряд веществ на том или ином этапе, поддерживают это равновесие и таким образом дают возможность организму довольно быстро справляться самому (без привлечения какой-либо посторонней помощи) и восстанавливаться.

Норма свертываемости крови не может быть определена каким-то одним параметром, ведь в этом процессе участвуют многие компоненты , активирующие друг друга. В связи с этим, анализы на свертываемость крови бывают разные, где интервалы их нормальных значений преимущественно зависят от метода проведения исследования, а также в иных случаях – от пола человека и прожитых им дней, месяцев, лет. И вряд ли читателя удовлетворит ответ: «Время свертывания крови составляет 5 – 10 минут» . Остается масса вопросов…

Все важны и все нужны

Остановка кровотечения опирается на архисложный механизм, включающий множество биохимических реакций, к участию в котором привлекается огромное количество различных компонентов, где каждый из них играет свою определенную роль.

схема свертывания крови

Между тем, отсутствие или несостоятельность хоть какого-то одного фактора свертывания или противосвертывания может расстроить весь процесс. Вот всего лишь несколько примеров:

  • Неадекватная реакция со стороны стенок сосудов нарушает кровяных пластинок – , что «почувствует» первичный гемостаз;
  • Низкая способность эндотелия синтезировать и выделять ингибиторы агрегации тромбоцитов (основной – простациклин) и естественные антикоагулянты () сгущает движущуюся по сосудам кровь, что приводит к формированию в кровотоке абсолютно ненужных организму свертков, которые до поры до времени могут спокойно «сидеть» прикрепленными к стеночке какого-либо сосуда. Эти становятся очень опасными, когда отрываются и начинают циркулировать в кровеносном русле – тем самым они создают риск сосудистой катастрофы;
  • Отсутствием такого плазменного фактора, как FVIII, обусловлена болезнь, сцепленная с полом – А;
  • Гемофилия В обнаруживается у человека, если по тем же причинам (рецессивная мутация в Х-хромосоме, которая, как известно, у мужчин только одна) имеет место недостаточность фактора Кристмана (FIX).

Вообще, все начинается еще на уровне поврежденной сосудистой стенки, которая, секретируя вещества, необходимые для обеспечения свертываемости крови, привлекает циркулирующие в кровотоке кровяные пластинки – тромбоциты. К примеру, «зазывающий» тромбоциты к месту аварии и способствующий их адгезии к коллагену – мощному стимулятору гемостаза, должен своевременно начать свою деятельность и хорошо работать, чтобы в дальнейшем можно было рассчитывать на формирование полноценной пробки.

Если тромбоциты на должном уровне используют свои функциональные возможности (адгезивно-агрегационная функция), быстро включаются в работу другие компоненты первичного (сосудисто-тромбоцитарного) гемостаза и в короткие сроки формируют тромбоцитарную пробку, то для того, чтобы остановить кровь, вытекающую из сосуда микроциркуляторного русла, можно обойтись и без особого влияния остальных участников процесса свертывания крови. Однако для образования полноценной пробки, способной закрыть травмированный сосуд, который имеет более широкий просвет, без плазменных факторов организму не справиться.

Таким образом, на первом этапе (сразу после получения травмы сосудистой стенки) начинают идти последовательные реакции, где активация одного фактора дает толчок к приведению в активное состояние остальных. И если где-то чего-то не хватает или фактор оказывается несостоятельным, процесс свертываемости крови затормаживается или обрывается вовсе.

В целом, механизм свертывания состоит из 3 фаз, которые должны обеспечивать:

  • Образование сложного комплекса активированных факторов (протромбиназы) и превращению белка, синтезируемого печенью – , в тромбин (фаза активации );
  • Трансформация растворенного в крови белка – фактора I ( , FI) в нерастворимый фибрин осуществляется в фазе коагуляции ;
  • Завершение процесса свертывания формированием плотного фибринового сгустка (фаза ретракции ).


Анализы на свертываемость крови

Многоэтапный каскадный ферментативный процесс, конечной целью которого является образование сгустка, способного закрыть «брешь» в сосуде, для читателя, наверняка, покажется запутанным и непонятным, поэтому достаточным будет напоминание, что данный механизм обеспечивают различные факторы свертывания, ферменты, Са 2+ (ионы кальция) и многообразие прочих компонентов. Однако в этой связи пациентов довольно часто интересует вопрос: как обнаружить, если с гемостазом что-то не в порядке или успокоиться, зная, что системы работают нормально? Конечно, для таких целей существуют анализы на свертываемость крови.

Самым распространенным специфическим (локальным) анализом состояния гемостаза считается широко известная, нередко назначаемая терапевтами, кардиологами, а также акушерами-гинекологами, наиболее информативная .

Между тем, следует заметить, что проведение такого количества тестов не всегда оправдано. Это зависит от многих обстоятельств: что ищет врач, на каком этапе каскада реакций он сосредотачивает свое внимание, сколько времени в распоряжении медицинских работников и т. д.

Имитация внешнего пути свертываемости крови

Например, внешний путь активации свертывания в лабораторных условиях может имитировать исследование, называемое медиками протромбином по Квику, пробой Квика, протромбиновым (ПТВ) или тромбопластиновым временем (все это разные обозначения одного анализа). В основе указанного теста, который находится в зависимости от факторов II, V, VII, X, лежит участие тканевого тромбопластина (он в ходе работы над образцом крови присоединяется к цитратной рекальцинированной плазме).

Пределы нормальных значений у мужчин и у женщин одного возраста не отличаются и ограничиваются диапазоном 78 – 142%, однако у женщин, ждущих ребенка, этот показатель слегка повышен (но слегка!). У детей, наоборот, нормы находятся в пределах меньших значений и возрастают по мере приближения к совершеннолетию и дальше:

Отражение внутреннего механизма в условиях лаборатории

Между тем, чтобы определить нарушение свертываемости крови, обусловленное сбоем работы внутреннего механизма, тканевой тромбопластин при проведении анализа не применяют – это позволяет плазме использовать исключительно собственные резервы. В условиях лаборатории внутренний механизм прослеживают, ожидая пока кровь, взятая из сосудов кровеносного русла, свернется сама. Начало этой сложной каскадной реакции совпадает с активацией фактора Хагемана (фактор XII). Запуск данной активации обеспечивают различные условия (контакт крови с поврежденной стенкой сосудов, клеточными мембранами, которые претерпели определенные изменения), поэтому ее называют контактной.

Контактная активация возникает и вне организма, например, когда кровь попадает в чужеродную среду и соприкасается с ней (контакт со стеклом в пробирке, инструментарием). Удаление из крови ионов кальция никак не отражается на запуске этого механизма, однако процесс не может завершиться образованием сгустка – он обрывается на этапе активации фактора IX, где без ионизированного кальция уже не обойтись.

Время свертывания крови или время, в течение которого она, пребывая до того в жидком состоянии, выливается в форму эластичного сгустка, зависит от скорости превращения белка фибриногена, растворенного в плазме, в нерастворимый фибрин. Он (фибрин) образует нити, которые удерживают красные кровяные тельца (эритроциты), заставляя их формировать сверток, закрывающий собой отверстие в поврежденном кровеносном сосуде. Время свертывания крови (1 мл, взятый из вены – метод Ли-Уайта) в таких случаях в среднем ограничивается 4 – 6 минутами. Однако норма свертываемости крови, безусловно, имеет более широкий диапазон цифровых (временных) величин:

  1. Кровь, взятая из вены, переходит в форму сгустка от 5 до 10 минут;
  2. Время свертывания по Ли-Уайту в стеклянной пробирке составляет 5 – 7 минут, в пробирке из силикона оно удлиняется до 12- 25 минут;
  3. Для крови, взятой из пальца, нормальными считаются показатели: начало – 30 секунд, окончание кровотечения – 2 минуты.

К анализу, отражающему внутренний механизм, обращаются при первых подозрениях на грубые нарушения свертываемости крови. Тест весьма удобен: проводится быстро (пока кровь течет или сгусток в пробирке образует), обходится без особых реактивов и сложного оборудования, в специальной подготовке пациент не нуждается. Разумеется, нарушения свертываемости крови, обнаруженные подобным образом, дают основание предполагать ряд существенных изменений в системах, обеспечивающих нормальное состояние гемостаза, и заставляют проводить дальнейшие исследования с целью выявления истинных причин патологии.

При увеличении (удлинении) времени свертываемости крови можно подозревать:

  • Дефицит плазменных факторов, предназначенных для обеспечения свертывания, или же врожденную их неполноценность, невзирая на то, что в крови они пребывают на достаточном уровне;
  • Серьезную патологию печени, повлекшую функциональную несостоятельность паренхимы органа;
  • (в фазе, когда способность крови сворачиваться идет на убыль);

Время свертываемости крови удлиняется в случаях использования гепаринотерапии, поэтому пациентам, получающим данный , сдавать анализы, свидетельствующие о состоянии гемостаза, приходится довольно часто.

Рассматриваемый показатель свертываемости крови уменьшает свои значения (укорачивается):

  • В фазе высокой коагуляции () ДВС-синдрома;
  • При других заболеваниях, повлекших патологическое состояние гемостаза, то есть, когда пациент уже имеет нарушения свертываемости крови и отнесен к группе повышенного риска образования тромбов (тромбоз, и т. п.);
  • У женщин, использующих для контрацепции или с целью лечения в течение длительного времени оральные средства, содержащие гормоны;
  • У женщин и мужчин, принимающих кортикостероиды (при назначении кортикостероидных препаратов возраст имеет весьма важное значение – многие из них у детей и пожилых людей способны вызвать существенные изменения со стороны гемостаза, поэтому запрещены к применению в этой группе).

В целом, нормы мало отличаются

Показатели свертываемости крови (норма) у женщин, мужчин и детей (имеется в виду один возраст для каждой категории), в принципе, мало отличаются, хотя отдельные показатели у женщин изменяются физиологически (до, во время и после месячных, в период беременности), поэтому пол взрослого человека все же учитывается при проведении лабораторных исследований. Кроме этого, у женщин в период вынашивания ребенка отдельные параметры даже должны несколько сдвигаться, ведь организму предстоит остановить кровотечение после родов, поэтому свертывающая система начинает готовиться загодя. Исключение в отношении некоторых показателей свертываемости крови составляет категория детей первых дней жизни, например, у новорожденных ПТВ на пару-тройку выше, нежели у взрослых лиц мужского и женского пола (норма взрослых – 11 – 15 секунд), а у недоношенных детей протромбиновое время увеличивается на 3 – 5 секунд. Правда, уже где-то к 4 дню жизни ПТВ снижается и соответствует норме свертываемости крови взрослых людей.

Познакомиться с нормой отдельных показателей свертываемости крови, а, возможно, и сравнить их с собственными параметрами (если тест был проведен сравнительно недавно и на руках имеется бланк с записью результатов исследования), читателю поможет приведенная ниже таблица:

Лабораторный тест Нормальные значения показателя свертываемости крови Используемый материал
Тромбоциты:

У женщин

У мужчин

У детей

180 – 320 х 10 9 /л

200 – 400 х 10 9 /л

150 – 350 х 10 9 /л

Капиллярная кровь (из пальца)

Время свертывания:

По Сухареву

По Ли-Уайту

Начало – 30 - 120 секунд, окончание – 3 - 5 минут

5 - 10 минут

Капиллярная

Кровь, взятая из вены

Длительность кровотечения по Дюке не более 4 минут кровь из пальца
Тромбиновое время (показатель обращения фибриногена в фибрин) 12 – 20 секунд венозная
ПТИ (протромбиновый индекс):

Кровь из пальца

Кровь из вены

90 – 105%

Капиллярная

Венозная

АЧТВ (активированное частичное тромбопластиновое время, каолин-кефалиновое время) 35 - 50 секунд (не коррелирует с полом и возрастом) кровь из вены
Фибиноген:

У взрослых мужчин и женщин

У женщин в последний месяц III триместра беременности

У детей первых дней жизни

2,0 – 4,0 г/л

1,25 – 3,0 г/л

Венозная кровь

В заключение хочется обратить внимание наших постоянных (и новых, конечно) читателей: возможно, прочтение обзорной статьи в полной мере не сможет удовлетворить интерес пациентов, которых затронула патология гемостаза. Люди, которые впервые столкнулись с подобной проблемой, как правило, хотят получить как можно больше сведений о системах, обеспечивающих и остановку кровотечения в нужный момент, и предотвращение образования опасных сгустков, поэтому начинают искать информацию на просторах интернета. Что ж, не следует торопиться – в других разделах нашего сайта дана подробная (и, главное, корректная) характеристика каждому из показателей состояния гемостаза, указан диапазон нормальных значений, а также описаны показания и подготовка к анализу.

Видео: просто о свертывания крови

Видео: репортаж об анализах на свертываемости крови

Темы _

14.1. Метаболизм эритроцитов

14.2. Особенности метаболизма фагоцитирующих клеток

14.3. Основные биохимические механизмы гемостаза

14.4. Основные свойства белковых фракций крови и значение их определения для диагностики заболеваний

Цели изучения Уметь:

1. Объяснять причины, вызывающие гемолиз эритроцитов.

2. Описывать молекулярные механизмы возникновения нарушений свертывания крови.

3. Аргументировать целесообразность применения некоторых лекарственных препаратов для лечения нарушений свертывания крови.

4. Обосновывать основные причины возникновения гипо- и гиперпроте-

инемий. Знать:

1. Особенности метаболизма эритроцитов, пути образования и обезвреживания в них активных форм кислорода.

2. Роль активных форм кислорода в фагоцитозе.

3. Структуру ферментных комплексов прокоагулянтного этапа свертывания крови, последовательность их взаимодействия, механизмы регуляции и этапы образования фибринового тромба.

4. Роль и молекулярные основы функционирования противосвертывающей и фибринолитической систем крови.

5. Молекулярные механизмы нарушений свертывания крови и современные способы их коррекции.

6. Основные свойства и функции белков плазмы крови.

ТЕМА 14.1. МЕТАБОЛИЗМ ЭРИТРОЦИТОВ

Эритроциты - высокоспециализированные клетки, которые переносят кислород от легких к тканям и диоксид углерода, образующийся при метаболизме из тканей к альвеолам легких. В результате дифференцировки эритроциты теряют ядро, рибосомы, митохондрии, эндоплазматический ретикулум. Эти клетки имеют только плазматическую мембрану и цитоплазму. Они не содержат ядра, поэтому неспособны к самовоспроизведению и репарации возникающих в них повреждений. Двояковогнутая форма эритроцитов имеет большую площадь поверхности по сравнению с клетками сферической формы такого же размера. Это облегчает газообмен между клеткой и внеклеточной средой. Вместе с тем такая форма и особенности строения

цитоскелета и плазматической мембраны обеспечивают большую пластичность эритроцитов при прохождении ими мелких капилляров.

Метаболизм глюкозы в эритроцитах представлен анаэробным гликолизом и пентозофосфатным путем превращения глюкозы. Эти процессы обусловливают сохранение структуры и функций гемоглобина, целостность клеточной мембраны и образование энергии для работы ионных насосов.

1. Гликолиз обеспечивает энергией работу транспортных АТФаз, а также протекающие с затратой АТФ гексокиназную и фосфофруктокиназную реакции гликолиза. NADH, образующийся в ходе анаэробного гликолиза, является коферментом метгемоглобинредуктазы, катализирующей восстановление метгемоглобина в гемоглобин. Кроме того, в эритроцитах присутствует фермент бисфосфоглицератмутаза, превращающий промежуточный метаболит этого процесса 1,3-бисфосфоглицерат в 2,3-бисфосфоглицерат. Образующийся только в эритроцитах 2,3-бисфосфоглицерат служит важным аллостерическим регулятором связывания кислорода с гемоглобином. На окислительном этапе пентозофосфатного пути превращения глюкозы образуется NADPH, участвующий в восстановлении глутатиона. Последний используется в антиоксидантной защите эритроцитов (рис. 14.1).

Рис. 14.1. Образование и обезвреживание активных форм кислорода в эритроцитах:

1 - источник супероксидного аниона в эритроцитах - спонтанное окисление Fe 2 + в геме гемоглобина; 2 - супероксиддисмутаза превращает супероксидный анион в пероксид водорода и О 2 ; 3 - пероксид водорода расщепляется каталазой или глутатионпероксидазой; 4 - глутатионредуктаза восстанавливает окисленный глутатион; 5 - на окислительном этапе пентозофосфатного пути превращения глюкозы образуется NADPH, необходимый для восстановления глутатиона; 6 - в глицеральдегидфосфатдегидрогеназной реакции гликолиза образуется NADH, участвующий в восстановлении железа метгемоглобина метгемоглобинредуктазной системой

2. Большое содержание кислорода в эритроцитах определяет высокую скорость образования супероксидного анион-радикала O 2 - , пероксида водорода Н 2 О 2 и гидроксил-радикала ОН".

Постоянным источником активных форм кислорода в эритроцитах является неферментативное окисление железа гемоглобина:

Активные формы кислорода могут вызвать гемолиз эритроцитов. Эритроциты содержат ферментативную систему, предотвращающую токсическое действие радикалов кислорода и разрушение мембран эритроцитов.

3. Нарушение любого звена ферментативной системы обезвреживания активных форм кислорода приводит к снижению скорости этого процесса. При генетическом дефекте глюкозо-6-фосфатдегидрогеназы и приеме некоторых лекарств, являющихся сильными окислителями, потенциал глутатионовой защиты может оказаться недостаточным. Это приводит к повышению содержания в клетках активных форм кислорода, вызывающих окисление SH-групп молекул гемоглобина. Образование дисульфидных связей между протомерами гемоглобина и метгемоглобина приводит к их агрегации - образованию телец Хайнца (рис. 14.2).

Рис. 14.2. Схема образования телец Хайнца - агрегации молекул гемоглобина.

В норме супероксиддисмутаза катализирует образование пероксида водорода, который под действием глутатионпероксидазы превращается в Н 2 О. При недостаточной активности ферментов обезвреживания активных форм кислорода происходит окисление SH-групп в остатках цистеина протомеров метгемоглобина и образование дисульфидных связей. Такие структуры называются тельцами Хайнца

Последние способствуют разрушению эритроцитов при попадании их в мелкие капилляры. Активные формы кислорода, вызывая перекисное окисление липидов мембран, разрушают мембраны.

ТЕМА 14.2. ОСОБЕННОСТИ МЕТАБОЛИЗМА ФАГОЦИТИРУЮЩИХ КЛЕТОК

Фагоцитоз обеспечивает защиту организма от бактерий. Моноциты и нейтрофилы мигрируют из кровяного русла к очагу воспаления и эндоцитозом захватывают бактерии, образуя фагосому.

1. Фагоцитоз требует увеличения потребления кислорода, который является главным источником O 2 - , H 2 O 2 , OH" в фагоцитирующих клетках (рис. 14.3). Этот процесс, продолжающийся 30-40 минут, сопровождается резким повышением поглощения кислорода и поэтому называется респираторным взрывом.

2. В макрофагах бактерицидное действие оказывает оксид азота NO, источником которого является реакция превращения аргинина в NO и цитруллин под действием NO-синтазы. Супероксид анион образует с оксидом азота соединения, обладающие сильными бактерицидными свойствами:

NO + О 2 - → ONOO - → ОН* + NO 2 .

Пероксинитрит ONOO - , оксид азота, диоксид азота, гидроксил радикал вызывают окислительное повреждение белков, нуклеиновых кислот и липидов бактериальных клеток.

Рис. 14.3. Образование активных форм кислорода в процессе респираторного взрыва активированными макрофагами, нейтрофилами и эозинофилами.

Активация NADPH-оксидазы, которая локализована на мембране клетки, вызывает образование супероксидных анионов. При фагоцитозе мембрана впячивается, затем образуется эндосома и супероксидсинтезирующая система вместе с бактериальной клеткой оказывается в эндосоме. Супероксидные анионы генерируют образование других активных молекул, включая Н 2 О 2 и гидроксильные радикалы. Миелопероксидаза - гемсодержащий фермент, находящийся в гранулах нейтрофилов. Она поступает в эндосому, где образует НС1О. В результате мембраны и другие структуры бактериальной клетки разрушаются

ТЕМА 14.3. ОСНОВНЫЕ БИОХИМИЧЕСКИЕ МЕХАНИЗМЫ

ГЕМОСТАЗА

Прекращение кровотечения после травмы кровеносных сосудов, раство рение сгустков крови - тромбов - и сохранение крови в жидком состоянии обеспечивает гемостаз. Этот процесс включает четыре этапа:

Рефлекторное сокращение поврежденного сосуда в первые секунды после травмы;

Образование в течение 3-5 минут тромбоцитарной пробки (белого тромба в результате взаимодействия поврежденного эндотелия с тромбоцитами;

Формирование в продолжение 10-30 мин фибринового (красного" тромба: растворимый белок плазмы крови фибриноген под действием фермента тромбина превращается в нерастворимый фибрин, который откладывается между тромбоцитами белого тромба;

Фибринолиз - растворение тромба под действием протеолитических ферментов, адсорбированных на фибриновом сгустке. На этом этапе просвет кровеносного сосуда освобождается от отложений фибрина и предотвращается закупорка сосуда фибриновым тромбом.

1. Свертывание крови - важнейшая часть гемостаза. В процессе формирова ния фибринового тромба можно выделить четыре этапа.

Превращание фибриногена в фибрин-мономер. Молекула фибриногена состоит из шести полипептидных цепей трех типов - 2Аа, 2Вр, 2γ. Они связаны между собой дисульфидными связями и образуют три домена А- и В-участки находятся на N-концах цепей Аа и Вр соответственно Эти участки содержат много остатков дикарбоновых аминокислот и поэтому заряжены отрицательно, что препятствует агрегации молекул фибриногена (рис. 14.4). Тромбин, который относится к группе серино вых протеаз, отщепляет А- и В-пептиды от фибриногена; в результате образуется фибрин-мономер.

Рис. 14.4. Строение фибриногена.

Фиброген состоит из шести полипептидных цепей 3 типов: 2Λα , 2Ββ и 2γ, образующих три домена (обозначены штрихами). Λ и В - отрицательно заряженные участки цепей Λα и Ββ препятствуют агрегации молекул фибриногена

Образование нерастворимого геля фибрина. В молекулах фибринамономера имеются участки, комплементарные к другим молекулам фибрина, - центры связывания, между которыми образуются нековалентные связи. Это приводит к полимеризации молекул фибрина и формированию нерастворимого геля фибрина (рис. 14.5). Он непрочен, так как образован слабыми нековалентными связями.

Рис. 14.5. Образование геля фибрина.

Фибриноген, освобождаясь под действием тромбина от отрицательно заряженных пептидов 2А и 2В, превращается в фибрин-мономер. Взаимодействие комплементарных участков в доменах молекул фибрина-мономера с другими такими же молекулами приводит к образованию геля фибрина

Стабилизация геля фибрина. Фермент трансглутамидаза (фактор XIIIa) образует амидные связи между радикалами аминокислот Глн и Лиз мономеров фибрина и между фибрином и гликопротеином межклеточного матрикса фибронектином (рис. 14.6.)

Сжатие геля осуществляет сократительный белок тромбоцитов тромбостенин в присутствии АТФ.

2. Свертывание крови может идти по внешнему или внутреннему пути.

Внешний путь свертывания крови инициируется при взаимодействии белков свертывающей системы с тканевым фактором (Тф) - белком, который экспонируется на мембранах поврежденного эндотелия и активированных тромбоцитов, внутренний путь - при контакте белков свертывающей системы с отрицательно заряженными участками поврежденного эндотелия.

Рис. 14.6. Образование амидных связей между остатками Глн и Лиз в мономерах фибрина

Коагуляции (образованию фибринового тромба) предшествует ряд последовательных реакций активации факторов свертывания крови. Эти реакции инициируются на поврежденной или измененной тромбогенным сигналом клеточной мембране и заканчиваются активацией протромбина.

Каскад реакций прокоагулянтного этапа имеет ряд особенностей:

Все ферменты являются протеазами и активируются частичным протеолизом;

Все реакции локализованы на поврежденных мембранах клеток крови и эндотелия, поэтому тромб образуется на этих участках;

Максимальную активность ферменты проявляют в составе мембранных комплексов, включающих фермент, фосфолипиды клеточных мембран, белок-активатор, Са 2 +.

Большинство факторов свертывания активируется по механизму положительной обратной связи.

В прокоагулянтном каскаде реакций внешнего пути последовательно образуются три мембранных комплекса (рис. 14.7). Каждый из них включает:

белок-активатор протеолитического фермента - тканевой фактор (Тф) (не требует активации), факторы V или VIII (активируются частичным протеолизом);

отрицательно заряженные фосфолипиды мембран эндотелия или тромбоцитов. При травме или поступлении тромбогенного сигнала нарушается поперечная асимметрия мембран, на поверхности появляются отрицательно заряженные фосфолипиды, экспонируется тканевой фактор и таким образом формируются тромбогенные участки;

ионы Са 2 +, взаимодействуя с полярными «головками» отрицательно заряженных фосфолипидов, обеспечивают связывание ферментов прокоагулянтного пути с мембранами клеток. В отсутствии Са 2 + кровь не свертывается;

Рис. 14.7. Прокоагулянтный этап внешнего пути свертывания крови и превращение фибриногена в фибрин.

Стрелка - активация факторов свертывания крови; стрелка с точками - активация факторов свертывания по принципу положительной обратной связи; - - мембранный фосфолипидный компонент ферментных комплексов, в рамке - белкиактиваторы.

1, 2 - фактор VIIa мембранного комплекса УПа-Тф-Са 2+ активирует факторы IX и X; 3 - фактор 1Ха мембранного комплекса IXa-VIIIa-Ca 2 + (тенназа) активирует фактор X; 4, 5 - фактор Ха мембранного комплекса Ха-Уа-Са 2 + (протромбиназа) превращает протромбин (фактор II) в тромбин (фактор Па) и активирует фактор VII по принципу положительной обратной связи; 6-10 - тромбин (фактор Па) превращает фибриноген в фибрин, активирует факторы V, VII, VIII и XIII

Один из протеолитических ферментов (сериновую протеазу) - фактор VII, IX или X. Эти белки содержат на N-концах молекул 10-12 остатков γ-карбоксиглутаминовой кислоты. Посттрансляционное карбоксилирование факторов VII, IX, X, а также протромбина, плазминогена и протеина С катализирует γ-глутамилкарбоксилаза. Коферментом этого фермента является восстановленная форма витамина K, которая образуется в печени под действием NADPH-зависимой витамин К-редуктазы (рис. 14.8).

Структурные аналоги витамина К - дикумарол и варфарин - являются конкурентными ингибиторами NADPH-зависимой витамин K-редуктазы.

Они снижают скорость восстановления витамина К и, следовательно, активность γ-глутамилкарбоксилазы. Производные варфарина и дикумарола используют как непрямые антикоагулянты для предотвращения тромбозов.

Инициирующий мембранный комплекс содержит белок-активатор Тф, фермент фактор VII и ионы Са 2 +. Фактор VII обладает небольшой активностью, но в комплексе VII-Тф-Са 2+ его активность в результате конформационных изменений возрастает, и он частичным протеолизом активирует фактор X.

Рис. 14.8. Посттрансляционное карбоксилирование остатков глутаминовой кислоты в молекулах сериновых протеаз свертывающей системы крови; роль Са 2 + в связывании этих ферментов на тромбогенных участках клеточных мембран

Кроме того, инициирующий комплекс активирует фактор IX. Мембранные комплексы IXа-VIIIa-Са 2 + (тенназа) и VIIа-Тф-Са 2 + образуют активный фактор Xа. Последний в составе протромбиназного комплекса Xа-Vа-Са 2 + может превращать небольшое количество протромбина (фактор II) в тромбин (фактор На). Образовавшийся тромбин активирует (по принципу положительной обратной связи) факторы V, VIII, VII, которые включаются в состав мембранных комплексов.

Протромбин - это гликопротеин плазмы крови, который синтезируется в печени. Молекула протромбина состоит из одной полипептидной цепи, содержит одну дисульфидную связь и остатки γ-карбоксиглутамата. Последние, взаимодействуя с Са 2 +, связывают профермент с мембраной (рис. 14.9).

Фактор Xa протромбиназного комплекса гидролизует две пептидные связи в молекуле протромбина, и он превращается в тромбин. Тромбин состоит из двух полипептидных цепей, связанных дисульфидной связью, и не содержит остатков γ-карбоксиглутамата (рис. 14.10).



эндотелия формируются три ферментных комплекса, каждый из которых содержит один из протеолитических ферментов - фактор калликреин или фактор и белок-активатор высокомолекулярный кининоген (ВМК). Калликреин - сериновая протеаза, субстратами которой являются фактор XII и некоторые белки плазмы крови, например плазминоген. Комплекс фактор XIIa-ВМК превращает прекалликреин в калликреин, который вместе с ВМК по принципу положительной обратной связи активирует фактор XII, включающийся в комплекс XIIa-BMK. В его составе фактор XIIa протеолитически активирует фактор XI, который в комплексе с ВМК превращает фактор IX в активный IXа. Последний включается в состав мембранного комплекса IXа-УШа-Са2+, который частичным протеолизом образует фактор Xа, являющийся протеолитическим ферментом протромбиназы Xа-Vа-Са2+) (рис. 14.11).

Рис. 14.11. Схема внутреннего и внешнего путей свертывания крови:

ВМК - высокомолекулярный кининоген; Тф - тканевой фактор. Обозначения см. на рис. 14.7

Все ферменты свертывающей системы крови являются протеазами и активируются частичным протеолизом:

1 - активируемый контактом с субэндотелием фактор XII превращает прекалликреин в калликреин; 2 - калликреин комплекса калликреин-ВМК частичным протеолизом активирует фактор XII; 3 - фактор XIIa комплекса XIIа-BMK активирует фактор XI;

4 - активированный частичным протеолизом фактор XIIa комплекса XIIa-ВМК превращает прекалликреин в калликреин по принципу положительной обратной связи;

5 - фактор XIa комплекса XIa-ВМК активирует фактор IX; 6 - фактор IXа мембранного комплекса IXа-УШа-Са2+ активирует фактор X; 7, 8 - фактор УПа мембранного комплекса УПа-Тф-Са 2 + активирует факторы IX и X; 9 - фактор Xa протромбиназного комплекса активирует фактор II (протромбин); 10, 11 - фактор IIа (тромбин) превращает фибриноген в фибрин и активирует фактор XIII (трансглутамидазу); 12 - фактор XIIIa катализирует образование амидных связей в геле фибрина;

5. Таким образом, каскад реакций внешнего и внутреннего путей свертывания крови приводит к образованию протромбиназы. Этапы, одинаковые для обоих путей, называют общим путем свертывания крови.

Каждое ферментативное звено реакций свертывания крови обеспечивает усиление сигнала, а положительные обратные связи обусловливают лавинообразное ускорение всего процесса, быстрое образование тромба и прекращение кровотечения.

6. Гемофилии. Снижение свертываемости крови приводит к гемофилиям - заболеваниям, сопровождающимся повторяющимися кровотечениями. Причина кровотечений при этих заболеваниях - наследственная недостаточность белков свертывающей системы крови.

Гемофилия А обусловлена мутацией гена фактора VIII, локализованного в X-хромосоме. Дефект этого гена проявляется как рецессивный признак, поэтому этой формой болезни страдают только мужчины. Гемофилия А сопровождается подкожными, внутримышечными и внутрисуставными кровоизлияниями, опасными для жизни.

Гемофилия В связана с генетическим дефектом фактора IX, который встречается гораздо реже.

7. Противосвертывающая система крови ограничивает распространение тромба и сохраняет кровь в жидком состоянии. К ней относятся ингибиторы ферментов свертывания крови и антикоагулянтная система (антикоагулянтный путь).

Антитромбин III - белок плазмы крови, который инактивирует ряд сериновых протеаз: тромбин, факторы IXa, Xa, XIIa, плазмин, калликреин. Этот ингибитор образует комплекс с ферментами, в составе которого они теряют свою активность. Активатором антитромбина III является гетерополисахарид гепарин. Гепарин поступает в кровь из тучных клеток соединительной ткани, взаимодействует с ингибитором, изменяет его конформацию, повышая его сродство к сериновым протеазам (рис. 14.12).

Ингибитор тканевого фактора (антиконвертин) синтезируется клетками эндотелия и локализуется на поверхности плазматической мембраны. Он образует с фактором Xa комплекс, который связывается с фосфолипидами мембран и тканевым фактором. В результате этого комплекс УПа-Тф-Са 2 + не образуется и становится невозможной активация факторов X и IX.

A 2 -Макроглобулин взаимодействует с активными сериновыми протеазами и подавляет их протеолитическую активность.

а 1 -Антитрипсин ингибирует тромбин, фактор XIa, калликреин, а также панкреатические и лейкоцитарные протеазы, ренин, урокиназу.

Антикоагулянтная система (система протеина С) включает последовательное образование двух ферментных комплексов. Взаимодействие тромбина с белком-активатором тромбомодулином (Тм) в присутствии ионов Са 2+ приводит к образованию первого мембранного комплекса

Рис. 14.12. Инактивация антитромбином III сериновых протеаз.

Гепарин связывается с антитромбином III, изменяет его конформацию и увеличивает сродство к сериновым протеазам.

Присоединение протеазы к комплексу гепарин-антитромбин III снижает сродство гепарина к ингибитору. Гетерополисахарид освобождается из комплекса и может активировать другие молекулы антитромбина III

антикоагулянтной системы Па-Тм-Са 2+ . В его составе тромбин, с одной стороны, теряет способность активировать факторы V и VIII, а также превращать фибриноген в фибрин, а с другой - частичным протеолизом активирует протеин С. Активированный протеин С (Са), взаимодействуя с белком активатором S, образует с помощью Са 2 + на мембране комплекс протеин Са-S-Са 2 +. В этих условиях активированный протеин С (Са) катализирует гидролиз белков-активаторов факторов Va и VIIIa (рис. 14.13).


Разрушение этих белков-активаторов приводит к торможению каскада реакций внешнего пути свертывания крови и остановке образования тромба.

8. Фибринолиз - это гидролиз фибрина в составе тромба с образованием растворимых пептидов, которые удаляются из кровотока. Этот этап гемостаза предотвращает закупорку сосуда фибриновым тромбом. Формирование фибринового тромба сопровождается осаждением на нем профермента плазминогена и его активаторов. Неактивный плазминоген синтезируется в печени и поступает в кровь. В крови он превращается в активный фермент плазмин частичным протеолизом. Эту реакцию катализируют протеолитические ферменты: тканевой активатор плазминогена (ТАП), урокиназа, фактор XIIa и калликреин (рис. 14.14).

Рис. 14.14. Фибринолитическая система крови:

1 - плазминоген под действием активаторов (ТАП, калликреина, урокиназы, фактора XIIa) частичным протеолизом превращается в плазмин; 2 - плазмин гидролизует фибрин с образованием растворимых пептидов; 3 - ТАП поступает в кровоток и ингибируется специфическими ингибиторами I и II типа; 4 - плазмин ингибируют неспецифические ингибиторы сериновых протеаз

Образующийся плазмин разрушает фибриновые волокна. Освобождающиеся из тромба плазмин и его активаторы поступают в кровоток. В крови плазмин инактивируется неспецифическими ингибиторами сериновых протеаз, а активаторы плазминогена - ингибиторами активаторов плазминогена I и II типа. Наследственная или приобретенная недостаточность белков фибринолитической системы сопровождается тромбозами.

ТЕМА 14.4. ОСНОВНЫЕ СВОЙСТВА БЕЛКОВЫХ ФРАКЦИЙ КРОВИ И ЗНАЧЕНИЕ ИХ ОПРЕДЕЛЕНИЯ ДЛЯ ДИАГНОСТИКИ ЗАБОЛЕВАНИЙ

Белки плазмы крови:

Образуют буферную систему крови и поддерживают рН крови в пределах 7,37-7,43;

Поддерживают осмотическое давление, удерживая воду в сосудистом русле;

Транспортируют метаболиты, витамины, ионы металлов, лекарства;

Определяют вязкость крови, играя важную роль в гемодинамике кровеносной системы;

Являются резервом аминокислот для организма;

Выполняют защитную роль.

1. Общий белок плазмы крови составляет 60-80 г/л, альбумин - 40- 60 г/л, глобулины 20-30 г/л.

Белки плазмы крови электрофоретически можно разделить на фракции, количество которых в зависимости от условий электрофореза может составлять от пяти до шестидесяти. При электрофорезе на бумаге белки делятся на пять фракций: альбумин (55-65%), - α1-глобулины (2-4%), α 2 -глобулины (6-12%), β-глобулины (8-12%) и γ-глобулины (12-22%). Альбумин имеет наибольшую, а γ-глобулины наименьшую подвижность в электрическом поле.

Большинство белков плазмы крови синтезируется в печени, однако некоторые образуются и в других тканях. Например, γ-глобулины синтезируются В-лимфоцитами, а пептидные гормоны в основном секретируют эндокринные железы.

2. Белок альбумин синтезируется в печени, имеет небольшую молекулярную массу и составляет большую часть белков плазмы крови. Благодаря высокому содержанию дикарбоновых аминокислот альбумин удерживает катионы, главным образом Na+, Са 2 +, Zn 2 +, и играет основную роль в сохранении коллоидно-осмотического давления. Альбумин является важнейшим транспортным белком. Он транспортирует жирные кислоты, неконъюгированный билирубин, триптофан, тироксин, трийодтиронин, альдостерон, многие лекарства.

3. Глобулины составляют четыре фракции: α 1 , α 2 , β и γ. В эти фракции входят белки, которые выполняют специфические и защитные функции, например, тироксин- и кортизолсвязывающие белки, трансферрин, церулоплазмин (ферроксидаза), интерфероны, иммуноглобулины.

4. Содержание белков в плазме крови может изменяться при патологических состояниях. Такие изменения называются диспротеинемией.

Гиперпротеинемия - это повышение концентрации белков в плазме крови.

Гиперпротеинемия может быть вызвана потерей воды организмом при полиурии, диарее, рвоте или обусловлена повышением содержания γ-глобулинов и некоторых других белков при острых воспалительных процессах, травмах, миеломной болезни. Их называют белками острой фазы, и к ним относят, например, С-реактивный белок (называемый так потому, что взаимодействует с С-полисахаридами пневмококков), гаптоглобин (образует комплекс с гемоглобином, который поглощается макрофагами, что предотвращает потерю железа), фибриноген.

Гипопротеинемия в основном является следствием нарушения синтеза или потери организмом альбумина, то есть является гипоальбуминемией. Она наблюдается при нефрите, гепатите, циррозе печени, ожогах, продолжительном голодании. Уменьшение содержания альбумина в крови приводит к снижению осмотического давления, а также нарушению распределения жидкости между сосудистым руслом и межклеточным пространством, что проявляется в виде отеков.

ЗАДАНИЯ ДЛЯ ВНЕАУДИТОРНОЙ РАБОТЫ

1. Нарисуйте в тетради схему метаболизма эритроцитов (рис. 14.15) и завершите ее, указав:

а) ферменты, обозначенные цифрами 1, 2, 3 и т. д.;

б) коферменты, обозначенные # и *;

в) ферменты метаболизма глюкозы, которые катализируют реакции восстановления NADP+ и NAD+;

Рис. 14.15. Метаболизм эритроцитов:

#, * - коферменты, #Н, *Н - восстановленные коферменты

г) аллостерический регулятор, снижающий сродство гемоглобина к кислороду в тканях;

д) ферменты катаболизма глюкозы, обеспечивающие синтез АТФ.

2. Напишите реакции:

а) образования активных форм кислорода в эритроцитах;

б) восстановления глутатиона;

в) устранения Н 2 О 2 ;

г) восстановления метгемоглобина в гемоглобин.

3. Нарисуйте в тетради схему прокоагулянтного этапа свертывания крови (рис. 14.16), заменив знак вопроса соответствующим фактором.

Рис. 14.16. Прокоагулянтный этап свертывания крови и образование геля фибрина

4. Напишите реакцию образования амидной связи между радикалами остатков глутамина и лизина мономеров фибрина, укажите фермент, его профермент, активатор и механизм активации. Объясните значение этой реакции в формировании фибринового тромба.

5. Представьте схему, показывающую роль тромбина на прокоагулянтном этапе свертывания крови и в антикоагулянтном пути, дописав названия отсутствующих белков и кофакторов (рис. 14.17). Укажите механизмы действия каждого фактора и его роль в гемостазе.

Рис. 14.17. Роль тромбина на прокоагулянтном этапе и в антикоагулянтном пути свертывания крови

6. Сравните результаты, полученные при электрофоретическом разделении на бумаге белков плазмы крови (протеинограммы) в норме и при некоторых патологических состояниях (рис. 14.18). Укажите возможные причины, вызвавшие изменения количества белков некоторых фракций при этих состояниях организма.

Рис. 14.18. Протеинограммы белков плазмы крови в норме и при некоторых патологических состояниях

7. Заполните табл. 14.1, указав функции белков плазмы крови. Таблица 14.1. Функции некоторых белков плазмы крови

ЗАДАНИЯ ДЛЯ САМОКОНТРОЛЯ

1. Установите правильную последовательность событий.

При обезвреживании активных форм кислорода в эритроцитах:

A. Супероксиддисмутаза катализирует образование пероксида водорода

Б. Гемоглобин спонтанно окисляется в метгемоглобин

B. Глутатионпероксидаза разрушает пероксид водорода

Г. Глутатионредуктаза восстанавливает окисленный глутатион Д. Глюкозо-6-фосфатдегидрогеназа восстанавливает NADP+

2. Выберите правильные ответы. В фагоцитирующих клетках:

A. Глутатионпероксидаза окисляет глутатион Б. NADPn-оксидаза восстанавливает О 2

B. Активные формы кислорода вызывают свободнорадикальные реакции

Г. Супероксиддисмутаза превращает супероксидный анион в Н 2 О 2 Д. Миелопероксидаза катализирует образование НОСl

3. Выполните «цепное» задание:

а) в результате механического или химического повреждения клеток эндотелия на поверхности экспонируется белок:

A. Тромбомодулин Б. Фактор V

B. Трансглутамидаза Г. Тканевой фактор Д. Протеин С

б) он активирует сериновую протеазу инициирующего комплекса свертывающей системы крови:

A. Тканевой фактор Б. Тромбомодулин

B. Протеин S Г. Фактор VII Д. Фактор II

в) этот активированный фермент в составе мембранного комплекса действует на субстрат:

A. Фибриноген Б. Протеин С

B. Гепарин

Г. Протромбин Д. Фактор X

г) протеолитическая активация этого субстрата приводит к образованию:

A. Фибрина

Б. Активированного протеина С

B. Фактора ХШа Г. Тромбина

Д. Фактора Ха

д) этот белок вызывает:

A. Активацию протеина С

Б. Превращение плазминогена в плазмин

B. Образование комплекса с гепарином Г. Активацию тканевого фактора

Д. Отщепление пептида от профермента

е) в результате этого образуется:

A. Плазмин

Б. Активная трансглутамидаза

B. Фибрин-мономер

Д. Тромбин

ж) этот белок участвует в реакции:

A. Частичного протеолиза Б. Фосфорилирования

B. Карбоксилирования Г. Полимеризации

Д. Конъюгации

з) в результате этой реакции происходит:

A. Образование белого тромба Б. Агрегация тромбоцитов

B. Ретракция геля фибрина

Г. Формирование красного тромба

Д. Превращение фибриногена в фибрин

4. Выполните «цепное» задание:

а) посттрансляционной модификацией ферментов свертывающей системы крови является:

A. Фосфорилирование серина Б. Окисление лизина

B. Гликозилирование серина

Г. Карбоксилирование глутамата Д. Гидроксилирование пролина

б) в этой реакции участвует кофермент:

A. NADP+ Б. FAD

Д. Восстановленная форма витамина K (КН 2)

в) структурным аналогом этого кофермента является лекарственный препарат:

A. Сульфаниламид Б. Фенобарбитал

B. Дитилин Г. Варфарин

Д. Аллопуринол

г) лечение этим препаратом вызывает (выберите правильные ответы):

A. Повышение свертываемости крови

Б. Нарушение образования ферментных мембранных комплексов

B. Снижение свертываемости крови

Г. Ускорение трансляции протеолитических ферментов внешнего

пути свертывания крови Д. Повышение скорости полимеризации фибрина.

5. Выберите правильные ответы.

Ингибиторами свертывания крови являются:

A. а 2 -Макроглобулин Б. Антитромбин III

B. Плазмин

Г. Антиконвертин Д. а^Антитрипсин

6. Выполните «цепное» задание.

а) тромбомодулин активирует:

A. Протеин С Б. Протеин S

B. Тканевой фактор Г. Протромбин

Д. Тромбин

б) этот белок изменяет свою конформацию и приобретает способность активировать:

A. Фактор VIII Б. Фактор V

B. Протеин S Г. Протеин С

Д. Антитромбин III

в) активация выбранного вами белка стимулирует образование следующего мембранного комплекса, в котором белком-активатором является:

A. Протеин S Б. Протеин С

B. Плазмин Г. Фактор V

г) этот активатор повышает сродство сериновой протеазы к субстратам (выберите правильные ответы):

A. Фактору Vа Б. Фактору VIIa

B. Фибрину

Г. Фактору VIIIa Д. Тромбину

7. Выберите правильные ответы.

Плазмин:

A. Образуется в результате частичного протеолиза из профермента. Б. Является сериновой протеазой

B. Активируется гепарином Г. Гидролизует фибрин

Д. Ингибируется α 2 -макроглобулином

8. Выберите правильные ответы. Гипоальбуминемия наблюдается при:

Б. Нефротическом синдроме

B. Злокачественных новообразованиях в печени Г. Циррозе печени

Д. Желчнокаменной болезни.

9. Выберите правильные ответы.

Гиперпротеинемия наблюдается при:

Б. Полиурии

B. Инфекционных болезнях Г. Повторяющейся рвоте

Д. Длительных кровотечениях

ЭТАЛОНЫ ОТВЕТОВ К «ЗАДАНИЯМ ДЛЯ САМОКОНТРОЛЯ»

1. Б→А→В→Т→Д

2. Б, В, Г, Д

3. а) Г, б) Г, в) Д, г)Д, д) Д, е) Д, ж) А, з) Д

4. а) Г, б) Д, в) Г, г) Б, В

5. А, Б, Г, Д

6. а) Д, б) Г, в) А, г) А, Г

7. А, Б, Г, Д

8. Б, В, Г

9. А, Б, В, Г

ОСНОВНЫЕ ТЕРМИНЫ И ПОНЯТИЯ

1. Метгемоглобинредуктаза

2. Бисфосфоглицератмутаза

3. Супероксиддисмутаза

4. Глутатионредуктаза

5. Тельца Хайнца

6. Гемостаз

7. Адгезия и агрегация тромбоцитов

8. Гемофилии

9. Тромбозы

10. Свертывание крови (внешний и внутренний пути свертывания крови)

11. Факторы свертывания крови

12. Витамин К

13. Противосвертывающая система (антитромбин III, антиконвертин, а 2 -макроглобулин, система протеина С)

14. Фибринолиз

15. Белки плазмы крови (альбумин, α 1 -глобулины, α 2 -глобулины, β-глобулины и γ-глобулины)

16. Гиперпротеинемия. Гипопротеинемия

ЗАДАНИЯ ДЛЯ АУДИТОРНОЙ РАБОТЫ

Решите задачи

1. Парацетамол - жаропонижающее и болеутоляющее вещество, которое входит в состав некоторых лекарств, например гриппостада, фервекса. Однако такие препараты противопоказаны людям, имеющим генетический дефект глюкозо-6-фосфатдегидрогеназы эритроцитов. Какие последствия может вызвать прием лекарств, содержащих парацетамол, у пациентов с недостаточностью этого фермента? Для ответа на вопрос напишите:

а) реакцию образования супероксидного аниона в эритроцитах;

б) схему обезвреживания активных форм кислорода в эритроцитах и объясните значение окислительных реакций пентозо-фосфатного пути для нормального протекания этого процесса.

2. У пациента, страдающего хроническим грануломатозом, обнаружена наследственная недостаточность NADPH-оксидазы. При этом заболевании некоторые микроорганизмы сохраняют жизнеспособность внутри фагоцитов, а их антигены вызывают клеточный иммунный ответ и образование гранулем. Объясните роль NADPH-оксидазы в фагоцитозе. Для этого:

а) напишите реакцию, которую катализирует этот фермент;

б) укажите вещества, синтез которых снижается в фагоцитирующих клетках при недостаточности NADPH-оксидазы.

3. В слюнных железах медицинской пиявки содержится ингибитор тромбина - пептид гирудин. В крови человека гирудин образует комплекс с тромбином, в котором фермент теряет способность превращать фибриноген в фибрин. Почему гирудотерапию (лечение пиявками) используют для профилактики тромбозов при сердечно-сосудистых заболеваниях? Для ответа на вопрос опишите:

а) этапы образования фибринового тромба;

б) особенности строения протромбина и механизм его превращения в тромбин.

4. Для профилактики тромбозов и тромбоэмболии после инфаркта миокарда врач назначил пациентке препарат варфарин и рекомендовал диету, исключающую на время лечения продукты, богатые витамином К (капусту, шпинат, салат, зеленый чай). Обоснуйте рекомендацию врача. Для этого:

а) укажите кофермент, образующийся в организме из витамина К;

б) объясните значение посттрансляционной модификации сериновых протеаз, в которой участвует этот кофермент;

в) опишите роль протеаз в мембранных ферментных комплексах внешнего пути свертывания крови.

5. В отсутствии ионов Са 2 + кровь не свертывается. Какую роль играет Са 2 + в свертывании крови? Для ответа на вопрос:

а) опишите состав мембранных комплексов прокоагулянтного этапа внешнего пути свертывания крови и последовательность их взаимодействия;

б) укажите роль Са 2+ в формировании этих комплексов.

6. У новорожденного с наследственным дефицитом протеина С обнаружена легочная эмболия. Почему ребенок, гомозиготный по такой мутации, может погибнуть сразу после рождения, если ему не проводить заместительную терапию протеином С? Для ответа на вопрос:

а) напишите схему реакций системы протеина С;

б) объясните роль тромбина в гемостазе.

7. Пациентке, страдающей тромбофлебитом, для профилактики тромбоза назначили лечение тканевым активатором плазминогена (ТАП). Объясните механизм действия рекомендованного врачом препарата. Для этого представьте схему фибринолитической системы крови и укажите роль ТАП, ингибитора активатора плазминогена и ингибиторов плазмина.

8. Редкое наследственное аутосомно-рецессивное заболевание анальбуминемия сопровождается почти полным отсутствием альбумина. Почему у пациентов с такой патологией наблюдаются отеки? Для ответа на вопрос укажите:

а) особенности аминокислотного состава альбумина;

б) функции этого белка плазмы крови.

Оглавление темы "Эозинофилы. Моноциты. Тромбоциты. Гемостаз. Система свертывания крови. Противосвертывающая система крови.":
1. Эозинофилы. Функции эозинофилов. Функции эозинофильных лейкоцитов. Эозинофилия.
2. Моноциты. Макрофаги. Функции моноцитов - макрофагов. Нормальное количество моноцитов - макрофагов.
3. Регуляция гранулоцитопоэза и моноцитопоэза. Гранулоцитарные колониестимулирующие факторы. Кейлоны.
4. Тромбоциты. Структура тромбоцитов. Функции тромбоцитов. Функции гликопротеинов. Зона золя - геля гиалоплазмы.
5. Тромбоцитопоэз. Регуляция тромбоцитопоэза. Тромбопоэтин (тромбоцитопоэтин). Мегакариоциты. Тромбоцитопения.
6. Гемостаз. Механизмы свертывания крови. Тромбоцитарный гемостаз. Тромбоцитарная реакция. Первичный гемостаз.

8. Внутренний путь активации свертывания крови. Тромбин.
9. Противосвертывающая система крови. Противосвертывающие механизмы крови. Антитромбин. Гепарин. Протеины. Простациклин. Тромбомодулин.
10. Тканевый активатор плазминогена. Эктоэнзимы. Роль эндотелия в противосвертывающей системе. Тканевый фактор. Ингибитор активатора плазминогена. Фактор Виллебранда. Антикоагулянты.

Останавливает окончательно кровотечение из поврежденных сосудов образование фибриновых тромбов , закрывающих их просвет. В плазме крови содержатся факторы свертывания в виде неактивных форм ферментов, обозначаемых римскими цифрами: I, II, VIII, IX, X, XI, XII, XIII (табл. 7.2). Повреждение тканей, эндотелия сосуда или клеток крови вызывает каскадную реакцию активации этих ферментов, которая приводит к образованию фибриновых нитей, формирующих сеть тромба .

Таблица 7.2. Факторы свертывания крови

Начало каскадной реакции связано с контактом неактивных форм факторов свертывания с поврежденными тканями, окружающими сосуды, (внешний путь активации свертывания крови ), а также при контакте крови с поврежденными тканями сосудистой стенки или с поврежденными самими клетками крови (внутренний путь активации свертывания крови).

Внешний путь . Мембраны поврежденных клеток тканей выделяют в плазму крови тканевый фактор - трансмембранный белок . Тканевой фактор с активированным им фактором свертывания крови VII активируют фактор X. Фактор Ха (а-активированный) в присутствии ионов кальция немедленно соединяется с тканевыми фосфолипидами и фактором V. Образовавшийся комплекс через несколько секунд после его формирования превращает часть протромбина в тромбин. Тромбин начинает действовать как протеолитический фермент на фибриноген, а также активировать фактор V, тем самым дополнительно ускоряя превращение протромбина в тромбин.

Одним из важнейших процессов, протекающих в нашем организме, является свертывание крови. Схема его будет описана ниже (также для наглядности предоставлены и изображения). И поскольку это сложный процесс, стоит рассмотреть его в подробностях.

Как всё происходит?

Итак, обозначенный процесс отвечает за остановку кровотечения, произошедшего из-за повреждения той или иной составляющей сосудистой системы организма.

Если говорить простым языком, то можно выделить три фазы. Первая - активация. После повреждения сосуда начинают происходить последовательные реакции, которые в итоге приводят к образованию так называемой протромбиназы. Это - сложный комплекс, состоящий из V и X Он образуется на фосфолипидной поверхности мембран тромбоцитов.

Вторая фаза - коагуляция. На этом этапе из фибриногена образуется фибрин - высокомолекулярный белок, который является основой тромбов, возникновение которых и подразумевает свертывание крови. Схема, предоставленная ниже, данную фазу наглядно демонстрирует.

И, наконец, третий этап. Он подразумевает образование фибринового сгустка, отличающегося плотной структурой. К слову, именно путём его промывания и высушивания удаётся получить «материал», который потом используется для приготовления стерильных плёнок и губок для остановки кровотечения, вызванного разрывом мелких сосудов при хирургических операциях.

О реакциях

Выше было кратко описано Схема, кстати, была разработана в далёком 1905 году учёным-коагулологом по имени Пауль Оскар Моравиц. И она не теряет своей актуальности до сих пор.

Но с 1905 года в области понимания свёртывания крови как сложного процесса изменилось многое. Благодаря прогрессу, конечно же. Учёные смогли открыть десятки новых реакций и белков, которые участвуют в данном процессе. И теперь более распространена каскадная схема свертывания крови. Благодаря ей восприятие и понимание такого сложного процесса становится немного более понятным.

Как можно видеть на предоставленном ниже изображении, происходящее буквально «разобрано на кирпичики». Принимается во внимание внутренняя и внешняя система - кровяная и тканевая. Для каждой характерна определённая деформация, наступающая вследствие повреждения. В кровяной системе вред наносится сосудистым стенкам, коллагену, протеазам (расщепляющие ферменты) и катехоламинам (молекулы-медиаторы). В тканевой же наблюдается повреждение клеток, вследствие которого из них выходит тромбопластин. Который является важнейшим стимулятором процесса свёртывания (иначе называемом коагуляцией). Он выходит непосредственно в кровь. Таков его «путь», но имеет он защитный характер. Ведь именно тромбопластин запускает процесс свёртывания. После его выхода в кровь начинается осуществление вышеперечисленных трёх фаз.

Время

Итак, что примерно представляет собой свертывание крови, схема понять помогла. Теперь хотелось бы немного поговорить о времени.

Весь процесс занимает как максимум 7 минут. Первая фаза длится от пяти до семи. В течение этого времени образуется протромбин. Данное вещество является сложной разновидностью белковой структуры, отвечающей за протекание процесса свёртывания и способность крови к сгущению. Которая используется нашим организмом в целях образования тромба. Он закупоривает повреждённое место, благодаря чему кровотечение останавливается. Всё это занимает 5-7 минут. Вторая и третья стадии происходят намного быстрее. За 2-5 секунд. Потому что эти фазы свертывания крови (схема предоставлена выше) затрагивают процессы, которые происходят повсеместно. А значит и у места повреждения непосредственно.

Протромбин, в свою очередь, образуется в печени. И на его синтез необходимо время. Насколько быстро выработается достаточное количество протромбина, зависит от количества витамина К, содержащегося в организме. Если его не хватает, кровотечение будет остановить сложно. И это является серьёзной проблемой. Поскольку нехватка витамина К указывает на нарушение синтеза протромбина. А это - недуг, который необходимо лечить.

Стабилизация синтеза

Что ж, общая схема свертывания крови понятна - теперь следует уделить немного внимания теме, касающейся того, что необходимо делать для восстановления необходимого количества витамина К в организме.

Для начала - правильно питаться. Самое большое количество витамина К содержится в зелёном чае - 959 мкг в 100 г! В три раза больше, кстати, чем в чёрном. Потому стоит его активно пить. Не стоит пренебрегать и овощами - шпинатом, белокочанной капустой, томатами, зелёным горошком, репчатым луком.

В мясе витамин К тоже содержится, но не во всём - только в телятине, говяжьей печени, баранине. Но меньше всего его находится в составе чеснока, изюма, молока, яблок и винограда.

Впрочем, если ситуация серьёзная, то одним разнообразием меню помочь будет сложно. Обычно врачи настоятельно рекомендуют комбинировать свой рацион с препаратами, ими прописанными. С лечением не стоит затягивать. Необходимо как можно скорее к нему приступить, чтобы нормализовать механизм свертывания крови. Схема лечения прописывается непосредственно врачом, и он также обязан предупредить, что может случиться, если рекомендациями пренебречь. А последствиями может стать дисфункция печени, тромбогеморрагический синдром, опухолевые заболевания и поражение стволовых клеток костного мозга.

Схема Шмидта

В конец XIX века жил известный физиолог и доктор медицинских наук. Звали его Александр Александрович Шмидт. Он прожил 63 года, и бóльшую часть времени посвятил исследованию проблем гематологии. Но особенно тщательно он изучал тему свёртывания крови. У него удалось установить ферментативный характер данного процесса, вследствие чего учёный предложил теоретическое ему объяснение. Которое наглядно изображает предоставленная ниже схема свертывания крови.

В первую очередь происходит сокращение повреждённого сосуда. Затем на месте дефекта образуется рыхлая, первичная тромбоцитарная пробка. Затем она укрепляется. Вследствие чего образуется красный тромб (иначе именуемый кровяным сгустком). После чего он частично или полностью растворяется.

В ходе данного процесса проявляются определённые факторы свертывания крови. Схема, в своём развёрнутом варианте, также их отображает. Обозначаются они арабскими цифрами. И всего их насчитывается 13. И о каждом необходимо рассказать.

Факторы

Полноценная схема свертывания крови невозможна без их перечисления. Что ж, начать стоит с первого.

Фактор I - это бесцветный белок фибриноген. Синтезируемый в печени, растворённый в плазе. Фактор II - протромбин, о котором уже говорилось выше. Его уникальная способность заключается в связывании ионов кальция. И именно впоследствии расщепления этого вещества формируется фермент свёртывания.

Фактор III - это липопротеин, тканевый тромбопластин. Его принято называть транспортом фосфолипидов, холестерина, а ещё триацилглицеридов.

Следующим фактором, IV, являются ионы Са2+. Те самые, которые связываются под воздействием бесцветного белка. Они задействованы во многих сложных процессах, помимо свёртывания, в секреции нейромедиаторов, например.

Фактор V - это глобулин. Который тоже образуется в печени. Он необходим для связывания кортикостероидов (гормональных веществ) и их транспортировки. Фактор VI определённое время существовал, но потом его было решено изъять из классификации. Поскольку учёные выяснили - его включает в себя фактор V.

Но классификацию менять не стали. Потому следом за V идёт фактор VII. Включающий в себя проконвертин, с участием которого образуется тканевая протромбиназа (первая фаза).

Фактор VIII - это белок, выраженной в одной цепочке. Известен, как антигемофильный глобулин А. Именно из-за его нехватки развивается такое редкое наследственное заболевание, как гемофилия. Фактор IX является «родственным» ранее упомянутому. Так как это антигемофильный глобулин В. Фактор X - непосредственно глобулин, синтезируемый в печени.

И, наконец, последние три пункта. Это фактор Розенталя, Хагемана и стабилизация фибрина. Они, в совокупности, влияют на образование межмолекулярных связей и нормальное функционирование такого процесса, как свертывание крови.

Схема Шмидта включает все эти факторы. И достаточно бегло с ними ознакомиться, чтобы понять, насколько описываемый процесс сложен и многозначен.

Противосвёртывающая система

Данное понятие также необходимо отметить внимание. Выше была описана система свертывания крови - схема также наглядно демонстрирует протекание этого процесса. Но так называемое «противосвёртывание» тоже имеет место быть.

Для начала хотелось бы отметить, что в ходе эволюции ученые решали две совершенно противоположные задачи. Они пытались выяснить - как организму удаётся предотвратить вытекание крови из повреждённых сосудов, и при этом сохранить её в жидком состоянии в целых? Что ж, решением второй задачи стало обнаружение противосвертывающей системы.

Она представляет собой определённый набор плазменных белков, которые способны снижать скорость химических реакций. То есть ингибировать.

И в данном процессе участвует антитромбин III. Его главная функция заключается в контролировании работы некоторых факторов, которые включает схема процесса свертывания крови. Важно уточнить: он не регулирует образование тромба, а устраняет ненужные ферменты, попавшие в кровоток из места, где тот формируется. Для чего это необходимо? Для предотвращения распространения свёртывания на участки кровеносного русла, которые оказались повреждёнными.

Препятствующий элемент

Рассказывая о том, что представляет собой система свертывания крови (схема которой представлена выше), нельзя не отметить вниманием такое вещество, как гепарин. Он представляет собой серосодержащий кислый гликозаминогликан (один из видов полисахаридов).

Это - прямой антикоагулянт. Вещество, способствующее угнетению активности свёртывающей системы. Именно гепарин препятствует процессу образования тромбов. Как это происходит? Гепарин просто снижает активность тромбина в крови. Однако это - естественное вещество. И оно несёт пользу. Если ввести данный антикоагулянт в организм, то можно поспособствовать активированию антитромбина III и липопротеинлипазы (ферменты, расщепляющие триглицериды - главные источники энергии для клеток).

Так вот, гепарин часто используется ля лечения тромботических состояний. Лишь одна его молекула может активировать большое количество антитромбина III. Соответственно, гепарин можно считать катализатором - поскольку действие в данном случае действительно схоже с эффектом, вызываемом ими.

Есть и другие вещества с таким же действием, содержащиеся в Взять, к примеру, α2- макроглобулин. Он способствует расщеплению тромба, оказывает влияние на процесс фибринолиза, выполняет функцию транспорта для 2-валентных ионов и некоторых белков. А ещё ингибирует вещества, участвующие в процессе свёртывания.

Наблюдаемые изменения

Есть ещё один нюанс, который не демонстрирует традиционная схема свертывания крови. Физиология нашего организма такова, что многие процессы подразумевают не только химические изменения. Но ещё и физические. Если бы мы могли наблюдать за свёртыванием невооруженным взглядом, то увидели бы, что форма тромбоцитов в его процессе меняется. Они превращаются в округлые клетки с характерными шиповидными отростками, которые необходимы для интенсивного осуществления агрегации - объединения элементов в единое целое.

Но это ещё не всё. Из тромбоцитов в процессе свёртывания выделяются различные вещества - катехоламины, серотонин и т.д. По причине этого просвет сосудов, которые оказались повреждёнными, сужается. За счёт чего происходит функциональная ишемия. Кровоснабжение в повреждённом месте снижается. И, соответственно, излияние постепенно тоже сводится к минимуму. Это даёт тромбоцитам возможность перекрыть повреждённые места. Они, за счёт своих шиповидных отростков, будто бы «крепятся» к краям коллагеновых волокон, которые находятся у краёв раны. На этом заканчивается первая, самая долгая фаза активации. Завершается она образованием тромбина. После чего следует ещё несколько секунд фазы коагуляции и ретракции. А последний этап - восстановление нормального кровообращения. И оно имеет большое значение. Поскольку полноценное заживление раны невозможно без хорошего кровоснабжения.

Полезно знать

Что ж, примерно так на словах и выглядит упрощенная схема свертывания крови. Впрочем, есть ещё несколько нюансов, которые хотелось бы отметить вниманием.

Гемофилия. О ней уже упоминалось выше. Это очень опасное заболевание. Любое кровоизлияние человеком, им страдающим, переживается тяжело. Заболевание наследственное, развивается из-за дефектов белков, принимающих участие в процессе свёртывание. Обнаружить его можно достаточно просто - при малейшем порезе человек потеряет много крови. И потратит немало времени на её остановку. А при особо тяжелых формах кровоизлияние может начаться без причин. Люди, страдающие гемофилией, могут рано подвергнуться инвалидизации. Поскольку частые кровоизлияния в мышечные ткани (обычные гематомы) и в суставы - это не редкость. Лечится ли это? С трудом. Человек должен в прямом смысле слова относиться к своему телу, как к хрупкому сосуду, и всегда быть аккуратным. Если случается кровотечение - нужно срочно ввести донорскую свежую кровь, в которой содержится фактор XVIII.

Обычно данным заболеванием страдают мужчины. А женщины выступают в роли носительниц гена гемофилии. Интересно, что британская королева Виктория была таковой. Одному из её сыновей заболевание передалось. Насчёт остальных двух неизвестно. С тех пор гемофилию, кстати, нередко называют королевской болезнью.

Но бывают и обратные случаи. Имеется в виду Если она наблюдается, то человеку тоже нужно быть не менее аккуратным. Повышенная свертываемость говорит о высоком риске образования внутрисосудистых тромбов. Которые закупоривают целые сосуды. Нередко последствием может стать тромбофлебит, сопровождающийся воспалением венозных стенок. Но этот дефект лечится проще. Часто, кстати, он является приобретённым.

Удивительно, сколько всего происходит в организме человека, когда тот элементарно порезался листком бумаги. Можно ещё долго рассказывать об особенностях крови, её свёртывании и процессах, которые его сопровождают. Но вся наиболее интересная информация, как и наглядно демонстрирующие её схемы, предоставлена выше. С остальным, при желании, можно ознакомиться в индивидуальном порядке.